Cycles on a multiset with only even-odd drops

被引:4
|
作者
Lin, Zhicong [1 ]
Yan, Sherry H. F. [2 ]
机构
[1] Shandong Univ, Res Ctr Math & Interdisciplinary Sci, Qingdao 266237, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Genocchi numbers; Even-odd drops; D-cycles; Laguerre histories;
D O I
10.1016/j.disc.2021.112683
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a finite subset A of Z(>0), Lazar and Wachs (2019) conjectured that the number of cycles on A with only even-odd drops is equal to the number of D-cycles on A. In this note, we introduce cycles on a multiset with only even-odd drops and prove bijectively a multiset version of their conjecture. As a consequence, the number of cycles on [2n] with only even-odd drops equals the Genocchi number gn. With Laguerre histories as an intermediate structure, we also construct a bijection between a class of permutations of length 2n -1 known to be counted by gn invented by Dumont and the cycles on [2n] with only even-odd drops. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] A Multiset Version of Even-Odd Permutations Identity
    Faal, Hossein Teimoori
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2019, 30 (05) : 683 - 691
  • [2] Cycles of even-odd drop permutations and continued fractions of Genocchi numbers
    Pan, Qiongqiong
    Zeng, Jiang
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2023, 199
  • [3] The Arithmetic of Even-Odd Trees
    Tarau, Paul
    2015 17TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC), 2016, : 90 - 97
  • [4] The even-odd hat problem
    Velleman, Daniel J.
    FUNDAMENTA MATHEMATICAE, 2012, 219 (02) : 105 - 110
  • [5] ZERO IS AN EVEN-ODD NUMBER
    Peclinovska, Sylva
    TASKS AND TOOLS IN ELEMENTARY MATHEMATICS, 2013, : 236 - 241
  • [6] Synchrotron Radiation Studies on Even-Odd and Odd-Even Nylons
    Ricart, A.
    Soto, D.
    Franco, L.
    Morales, L. T.
    Puiggali, J.
    SYNCHROTRON RADIATION IN POLYMER SCIENCE (SRPS 4), 2010, 14
  • [7] MAGNETIC MOMENTS OF EVEN-ODD NUCLEI
    DAVIDSON, JP
    PHYSICAL REVIEW, 1952, 85 (03): : 432 - 434
  • [8] STRUCTURE OF EVEN-EVEN AND EVEN-ODD XE NUCLIDES
    MANTICA, PF
    CARTER, HK
    ZIMMERMAN, BE
    WALTERS, WB
    RIKOVSKA, J
    STONE, NJ
    RUPNIK, D
    ZGANJAR, EF
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1991, 201 : 41 - NUCL
  • [9] EVEN-ODD ANOMALOUS TUNNELING EFFECT
    KAMINSKI, P
    DROZDZ, S
    PLOSZAJCZAK, M
    CAURIER, E
    PHYSICAL REVIEW C, 1993, 47 (04): : 1548 - 1552
  • [10] MAGNETIC MOMENTS OF EVEN-ODD NUCLEI
    DAVIDSON, JP
    PHYSICAL REVIEW, 1952, 86 (04): : 609 - 609