Solution surfaces of Monge-Ampere equations

被引:7
作者
Ishikawa, G
Morimoto, T
机构
[1] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
[2] Nara Womens Univ, Dept Math, Nara 6308506, Japan
关键词
Monge-Ampere equation; contact geometry; Legendre submanifold; projective duality; Hartman-Nirenberg's theorem; tangent developable; open umbrella;
D O I
10.1016/S0926-2245(01)00033-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we examine the singularities of solution surfaces of Monge-Ampere equations and study their global and local effects on the solutions for certain kinds of equations in the framework of contact geometry. In particular, as a byproduct, we give a simple proof to the classical Hartman-Nirenberg's theorem by using the notion of projective duality and provide a new example of compact developable hypersurfaces in the real projective space RP4.
引用
收藏
页码:113 / 124
页数:12
相关论文
共 27 条
[1]  
BALLESTEROS JJN, 1993, GEOMETRIAE DEDICATA, V47, P241
[3]  
GIVENTAL AB, 1986, FUNKTSIONAL ANAL PRI, V20
[4]  
GRIFFITHS P, 1979, ANN SCI ECOLE NORM S, V12, P355
[5]   ON SPHERICAL IMAGE MAPS WHOSE JACOBIANS DO NOT CHANGE SIGN [J].
HARTMAN, P ;
NIRENBERG, L .
AMERICAN JOURNAL OF MATHEMATICS, 1959, 81 (04) :901-920
[6]   DETERMINACY OF THE ENVELOPE OF THE OSCULATING HYPERPLANES TO A CURVE [J].
ISHIKAWA, G .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1993, 25 :603-610
[7]   Developable of a curve and determinacy relative to osculation-type [J].
Ishikawa, G .
QUARTERLY JOURNAL OF MATHEMATICS, 1995, 46 (184) :437-451
[8]  
Izumiya S., 1993, ADV STUDIES PURE MAT, V22, P89
[9]  
Jorgens K., 1954, MATH ANN, V127, P130, DOI 10.1007/BF01361114