Multi-wheat-model ensemble responses to interannual climate variability

被引:47
作者
Ruane, Alex C. [1 ]
Hudson, Nicholas I. [2 ]
Asseng, Senthold [3 ]
Camarrano, Davide [3 ,4 ]
Ewert, Frank [5 ,25 ]
Martre, Pierre [6 ,7 ]
Boote, Kenneth J. [3 ]
Thorburn, Peter J. [8 ]
Aggarwal, Pramod K. [9 ]
Angulo, Carlos [5 ]
Basso, Bruno [10 ,11 ]
Bertuzzi, Patrick [12 ]
Biernath, Christian [13 ]
Brisson, Nadine [14 ,15 ]
Challinor, Andrew J. [16 ,17 ]
Doltra, Jordi [18 ]
Gayler, Sebastian [19 ]
Goldberg, Richard [2 ]
Grant, Robert F. [20 ]
Heng, Lee [21 ]
Hooker, Josh [22 ]
Hunt, Leslie A. [23 ]
Ingwersen, Joachim [19 ]
Izaurralde, Roberto C. [24 ]
Kersebaum, Kurt Christian [25 ]
Kumar, Soora Naresh [26 ]
Mueller, Christoph [27 ]
Nendel, Claas [25 ]
O'Leary, Garry [28 ]
Olesen, Jorgen E. [29 ]
Osborne, Torn M. [30 ]
Palosuo, Taru [31 ]
Priesack, Eckart [13 ]
Ripoche, Dominique [12 ]
Roetter, Reimund P. [31 ,42 ]
Semenov, Mikhail A. [32 ]
Shcherbak, Iurii [33 ]
Steduto, Pasquale [34 ]
Stoeckle, Claudio O. [35 ]
Stratonovitch, Pierre [32 ]
Streck, Thilo [19 ]
Supit, Iwan [36 ]
Tao, Fulu [31 ,37 ]
Travasso, Maria [38 ]
Waha, Katharina [8 ,27 ]
Wallach, Daniel [39 ]
White, Jeffrey W. [40 ]
Wolf, Joost [41 ]
机构
[1] NASA, Goddard Inst Space Studies, New York, NY 10025 USA
[2] Columbia Univ, Ctr Climate Syst Res, New York, NY USA
[3] Univ Florida, Agr & Biol Engn Dept, Gainesville, FL USA
[4] James Hutton Inst, Invergowrie, Dundee, Scotland
[5] Univ Bonn, Inst Crop Sci & Resource Conservat, D-53115 Bonn, Germany
[6] Natl Inst Agr Res INRA, Genet Divers & Ecophysiol Cereals GDEC UMR1095, F-63100 Clermont Ferrand, France
[7] INRA, Montpellier SupAgro, LEPSE UMR759, F-34060 Montpellier, France
[8] CSIRO, St Lucia, Qld 4067, Australia
[9] Int Water Management Inst, Consultat Grp Int Agr Res, Res Program Climate Change Agr & Food Secur, New Delhi 110012, India
[10] Michigan State Univ, Dept Geol Sci, E Lansing, MI 48824 USA
[11] Michigan State Univ, Kellogg Biol Stn, E Lansing, MI 48824 USA
[12] INRA, AgroClim US1116, F-84914 Avignon, France
[13] German Res Ctr Environm Hlth, Inst Biochem Plant Pathol, Helmholtz Zentrum Munchen, D-85764 Neuherberg, Germany
[14] INRA, Agron UMR0211, F-78750 Thiverval Grignon, France
[15] AgroParisTech, Agron UMR0211, F-78750 Thiverval Grignon, France
[16] Univ Leeds, Inst Climate & Atmospher Sci, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England
[17] Ctr Int Agr Trop, CGIAR ESSP Program Climate Change Agr & Food Secu, Cali 763537, Colombia
[18] Cantabrian Agr Res & Training Ctr, Muriedas 39600, Spain
[19] Univ Stuttgart Hohenheim, Inst Soil Sci & Land Evaluat, D-70599 Stuttgart, Germany
[20] Univ Alberta, Dept Renewable Resources, Edmonton, AB T6G 2E3, Canada
[21] IAEA, A-1400 Vienna, Austria
[22] Univ Reading, Sch Agr Policy & Dev, Reading RG6 6AR, Berks, England
[23] Univ Guelph, Dept Plant Agr, Guelph, ON N1G 2W1, Canada
[24] Univ Maryland, Dept Geog Sci, College Pk, MD 20782 USA
[25] Leibniz Ctr Agr Landscape Res ZALF, Inst Landscape Syst Anal, D-15374 Muncheberg, Germany
[26] Indian Agr Res Inst, Ctr Environm Sci & Climate Resilient Agr, New Delhi 110012, India
[27] Potsdam Inst Climate Impact Res, D-14473 Potsdam, Germany
[28] Landscape & Water Sci, Dept Primary Ind, Horsham, Vic 3400, Australia
[29] Aarhus Univ, Dept Agroecol, DK-8830 Tjele, Denmark
[30] Univ Reading, Dept Meteorol, Natl Ctr Atmospher Sci, Reading RG6 6BB, Berks, England
[31] Nat Resources Inst Finland Luke, Environm Impacts Grp, FI-01370 Vantaa, Finland
[32] Rothamsted Res, Computat & Syst Biol Dept, Harpenden AL5 2JQ, Herts, England
[33] Queensland Univ Technol, Inst Future Environm, Brisbane, Qld 4000, Australia
[34] UN, Food & Agr Org, Rome, Italy
[35] Washington State Univ, Biol Syst Engn, Pullman, WA 99164 USA
[36] Wageningen Univ, Earth Syst Sci Climate Change & Adapt Land Use &, NL-6700 AA Wageningen, Netherlands
[37] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
[38] INTA CIRN, Inst Climate & Water, RA-1712 Castelar, Argentina
[39] INRA, Agrosyst & Dev Terr UMR1248, F-31326 Castanet Tolosan, France
[40] USDA ARS, Arid Land Agr Res Ctr, Maricopa, AZ 85138 USA
[41] Wageningen Univ, Plant Prod Syst, NL-6700 AA Wageningen, Netherlands
[42] Univ Gottingen, D-37073 Gottingen, Germany
基金
英国生物技术与生命科学研究理事会;
关键词
Crop modeling; Uncertainty; Multi-model ensemble; Wheat; AgMIP; Climate impacts; Temperature; Precipitation; lnterannual variability; SIMULATION-MODEL; CROP MODEL; LARGE-AREA; NITROGEN DYNAMICS; FARMING SYSTEMS; YIELD RESPONSE; GROWTH; WATER; IMPACTS; PERFORMANCE;
D O I
10.1016/j.envsoft.2016.03.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981-2010 grain yield, and we evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models' climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal common characteristics of yield response to climate; however models rarely share the same cluster at all four sites indicating substantial independence. Only a weak relationship (R-2 <= 0.24) was found between the models' sensitivities to interannual temperature variability and their response to long-term warming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs and motivating continuing analysis and model development efforts. Published by Elsevier Ltd.
引用
收藏
页码:86 / 101
页数:16
相关论文
共 107 条
[1]   InfoCrop: A dynamic simulation model for the assessment of crop yields, losses due to pests, and environmental impact of agro-ecosystems in tropical environments. II. Performance of the model [J].
Aggarwal, PK ;
Banerjee, B ;
Daryaei, MG ;
Bhatia, A ;
Bala, A ;
Rani, S ;
Chander, S ;
Pathak, H ;
Kalra, N .
AGRICULTURAL SYSTEMS, 2006, 89 (01) :47-67
[2]  
Alderman P.D., 2013, P WORKSH MOD WHEAT R, P138
[3]   Implication of crop model calibration strategies for assessing regional impacts of climate change in Europe [J].
Angulo, Carlos ;
Rotter, Reimund ;
Lock, Reiner ;
Enders, Andreas ;
Fronzek, Stefan ;
Ewert, Frank .
AGRICULTURAL AND FOREST METEOROLOGY, 2013, 170 :32-46
[4]  
[Anonymous], 1998, USERS GUIDE WOFOST 7
[5]  
[Anonymous], 2015, GEOSCI MODEL DEV, DOI DOI 10.5194/gmd-8-261-2015
[6]  
Arnold G.W., 1976, SIMULATION MONOGRAPH
[7]  
Asseng S, 2015, NAT CLIM CHANGE, V5, P143, DOI [10.1038/nclimate2470, 10.1038/NCLIMATE2470]
[8]  
Asseng S, 2013, NAT CLIM CHANGE, V3, P827, DOI [10.1038/nclimate1916, 10.1038/NCLIMATE1916]
[9]   Simulated wheat growth affected by rising temperature, increased water deficit and elevated atmospheric CO2 [J].
Asseng, S ;
Jamieson, PD ;
Kimball, B ;
Pinter, P ;
Sayre, K ;
Bowden, JW ;
Howden, SM .
FIELD CROPS RESEARCH, 2004, 85 (2-3) :85-102
[10]   Performance of the APSIM-wheat model in Western Australia [J].
Asseng, S ;
Keating, BA ;
Fillery, IRP ;
Gregory, PJ ;
Bowden, JW ;
Turner, NC ;
Palta, JA ;
Abrecht, DG .
FIELD CROPS RESEARCH, 1998, 57 (02) :163-179