On finitely recursive programs

被引:12
作者
Baselice, S. [1 ]
Bonatti, P. A. [1 ]
Criscuolo, G. [1 ]
机构
[1] Univ Naples Federico II, Naples, Italy
来源
LOGIC PROGRAMMING, PROCEEDINGS | 2007年 / 4670卷
关键词
D O I
10.1007/978-3-540-74610-2_7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Finitary programs are a class of logic programs admitting functions symbols and hence infinite domains. In this paper we prove that a larger class of programs, called finitely recursive programs, preserves most of the good properties of finitary programs under the stable model semantics, namely: (i) finitely recursive programs enjoy a compactness property; (ii) inconsistency check and skeptical reasoning are semidecidable; (iii) skeptical resolution is complete. Moreover, we show how to check inconsistency and answer skeptical queries using finite subsets of the ground program instantiation.
引用
收藏
页码:89 / +
页数:3
相关论文
共 15 条
[1]  
[Anonymous], J METHODS LOGIC COMP
[2]  
APT KR, 1990, HDB THEORETICAL COMP, VB, P495
[3]  
Baral C., 2003, Knowledge Representation, Reasoning and Declarative Problem Solving
[4]   ε-connections of abstract description systems [J].
Kutz, O ;
Lutz, C ;
Wolter, F ;
Zakharyaschev, M .
ARTIFICIAL INTELLIGENCE, 2004, 156 (01) :1-73
[5]   Resolution for skeptical stable model semantics [J].
Bonatti, PA .
JOURNAL OF AUTOMATED REASONING, 2001, 27 (04) :391-421
[6]  
EITER T, 1997, LECT NOTES COMPUTER, V1265, P364
[7]  
Gelfond M., 1991, New Generation Computing, V9, P365, DOI 10.1007/BF03037169
[8]  
Gelfond M., 1988, P 5 INT C LOG PROGR, P1070
[9]  
LIFSCHITZ V, 1995, P 12 INT C LOG PROGR, P581
[10]  
LIFSCHITZ V, 1994, INT C LOG PROGR, P23