Modeling 3D elastic VTI wave propagation using an optimal k-space operator-based temporal high-accuracy staggered-grid finite-difference scheme

被引:1
作者
Xu, Shigang [1 ,2 ]
Liu, Yang [1 ,2 ,3 ]
机构
[1] China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing, Peoples R China
[2] China Univ Petr, CNPC Key Lab Geophys Prospecting, Beijing, Peoples R China
[3] China Univ Petr, Karamay Campus, Karamay, Xinjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite difference; Staggered grid; Elastic wave propagation; Numerical optimization; Vertical transversely isotropic; ORDER ACCURACY; LEAST-SQUARES; TIME; MEDIA; EXTRAPOLATION; EQUATIONS; INVERSION; ELEMENT; SOLVE;
D O I
10.1016/j.jappgeo.2019.103847
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
It is difficult to extend the present time-space-domain or temporal high-order finite-difference (FD) stencils to model anisotropic wave equations owing to anisotropy parameters and spatial derivatives are mutually coupled. Thus, high-order spatial and second-order temporal FDs are commonly used to discretize anisotropic wave equations. To improve temporal modeling\accuracy, we develop an efficient temporal high-accuracy staggered-grid FD (SG-FD) scheme to solve the first-order elastic wave equations in 3D vertical transversely isotropic (VD) media. Through combining the spatial dispersion relation of the original SG-FD stencil with the first-order k (wavenumber)-space operator, we construct a modified SG-FD dispersion relation and determine FD coefficients using least-squares (LS). We adopt the modified LS-based SG-FD scheme using k-space operator compensation to simulate 3D elastic VTI wave propagation. Dispersion analysis and numerical examples demonstrate that our optimal k-space operator-based SG-FD scheme can achieve high temporal accuracy without compromising spatial accuracy compared with the traditionally uncompensated Taylor-series expansion- and IS-based SG-FD methods. Moreover, the stability of our proposed FD scheme is superior to the conventional ones. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 55 条
[1]   Finite-difference modelling of S-wave splitting in anisotropic media [J].
Bansal, Reeshidev ;
Sen, Mrinal K. .
GEOPHYSICAL PROSPECTING, 2008, 56 (03) :293-312
[3]   Seismic modeling [J].
Carcione, JM ;
Herman, GC ;
ten Kroode, APE .
GEOPHYSICS, 2002, 67 (04) :1304-1325
[4]   Modeling Elastic Wave Propagation Using K-Space Operator-Based Temporal High-Order Staggered-Grid Finite-Difference Method [J].
Chen, Hanming ;
Zhou, Hui ;
Zhang, Qingchen ;
Chen, Yangkang .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (02) :801-815
[5]   A k-space operator-based least-squares staggered-grid finite-difference method for modeling scalar wave propagation [J].
Chen, Hanming ;
Zhou, Hui ;
Zhang, Qingchen ;
Xia, Muming ;
Li, Qingqing .
GEOPHYSICS, 2016, 81 (02) :T45-T61
[6]   Lax-Wendroff and Nystrom methods for seismic modelling [J].
Chen, Jing-Bo .
GEOPHYSICAL PROSPECTING, 2009, 57 (06) :931-941
[7]  
Chu CL, 2012, GEOPHYSICS, V77, pT57, DOI [10.1190/geo2011-0180.1, 10.1190/GEO2011-0180.1]
[8]  
Chu CL, 2011, GEOPHYSICS, V76, pT113, DOI [10.1190/GEO2011-0069.1, 10.1190/geo2011-0069.1]
[9]   TTI reverse time migration using the pseudo-analytic method [J].
Crawley S. ;
Brandsberg-Dahl S. ;
McClean J. ;
Chemingui N. .
Leading Edge (Tulsa, OK), 2010, 29 (11) :1378-1384
[10]   THE APPLICATION OF HIGH-ORDER DIFFERENCING TO THE SCALAR WAVE-EQUATION [J].
DABLAIN, MA .
GEOPHYSICS, 1986, 51 (01) :54-66