Synthesis, Characterization and Preliminary Biological Evaluation of P(HPMA)-b-P(LLA) Copolymers: A New Type of Functional Biocompatible Block Copolymer

被引:35
作者
Barz, Matthias [1 ]
Wolf, Florian K. [1 ]
Canal, Fabiana [2 ]
Koynov, Kaloian [3 ]
Vicent, Maria J. [2 ]
Frey, Holger [1 ]
Zentel, Rudolf [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Organ Chem, D-55099 Mainz, Germany
[2] Ctr Invest Principe Felipe, Polymer Therapeut Lab, ES-46012 Valencia, Spain
[3] Max Planck Inst Polymer Res, D-55128 Mainz, Germany
关键词
biocompatible block copolymers; chain; fluorescence correlation spectroscopy; HPMA block copolymers; polylactide block copolymers; RAFT polymerization; synthesis; TRANSFER RADICAL POLYMERIZATION; RAFT POLYMERIZATION; ANTITUMOR AGENT; DRUG-DELIVERY; MICELLES; POLYMERS; DOXORUBICIN; ROP; NANOCARRIERS; COMBINATION;
D O I
10.1002/marc.201000090
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
We describe a synthetic pathway to functional P(HPMA)-b-P(LLA) block copolymers. The synthesis relies on a combination of ring-opening polymerization of L-lactide, conversion into a chain transfer agent (CTA) for the RAFT polymerization of pentafluorophenyl methacrylate. A series of block copolymers was prepared that exhibited molecular weights (M) over bar (n) ranging from 7 600 to 34 300 g . mol(-1), with moderate PDI between 1.3 and 1.45. These reactive precursor polymers have been transformed into biocompatible P(HPMA)-b-P(LLA) copolymers and their fluorescently labeled derivatives by facile replacement of the pentafluorophenyl groups. The fluorescence label attached to this new type of a partially degradable amphiphilic block copolymer was used to study cellular uptake in human cervix adenocarcinoma (HeLa) cells as well as aggregation behavior by fluorescence correlation spectroscopy (FCS).
引用
收藏
页码:1492 / 1500
页数:9
相关论文
共 51 条
[1]   A review of the latest clinical compounds to inhibit VEGF in pathological angiogenesis [J].
Baka, Sofia ;
Clamp, Andrew R. ;
Jayson, Gordon C. .
EXPERT OPINION ON THERAPEUTIC TARGETS, 2006, 10 (06) :867-876
[2]   From Defined Reactive Diblock Copolymers to Functional HPMA-Based Self-Assembled Nanoaggregates [J].
Barz, M. ;
Tarantola, M. ;
Fischer, K. ;
Schmidt, M. ;
Luxenhofer, R. ;
Janshoff, A. ;
Theato, P. ;
Zentel, R. .
BIOMACROMOLECULES, 2008, 9 (11) :3114-3118
[3]   The uptake of N-(2-hydroxypropyl)-methacrylamide based homo, random and block copolymers by human multi-drug resistant breast adenocarcinoma cells [J].
Barz, Matthias ;
Luxenhofer, Robert ;
Zentel, Rudolf ;
Kabanov, Alexander V. .
BIOMATERIALS, 2009, 30 (29) :5682-5690
[4]   Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers [J].
Batrakova, Elena V. ;
Kabanov, Alexander V. .
JOURNAL OF CONTROLLED RELEASE, 2008, 130 (02) :98-106
[5]   MODEL REACTIONS FOR SYNTHESIS OF PHARMACOLOGICALLY ACTIVE POLYMERS BY WAY OF MONOMERIC AND POLYMERIC REACTIVE ESTERS [J].
BATZ, HG ;
FRANZMANN, G ;
RINGSDORF, H .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 1972, 11 (12) :1103-1104
[6]   'Click' chemistry in polymer and material science: An update [J].
Binder, Wolfgang H. ;
Sachsenhofer, Robert .
MACROMOLECULAR RAPID COMMUNICATIONS, 2008, 29 (12-13) :952-981
[7]   Bioapplications of RAFT Polymerization [J].
Boyer, Cyrille ;
Bulmus, Volga ;
Davis, Thomas P. ;
Ladmiral, Vincent ;
Liu, Jingquan ;
Perrier, Sebastien .
CHEMICAL REVIEWS, 2009, 109 (11) :5402-5436
[8]   A more versatile route to block copolymers and other polymers of complex architecture by living radical polymerization: The RAFT process [J].
Chong, YK ;
Le, TPT ;
Moad, G ;
Rizzardo, E ;
Thang, SH .
MACROMOLECULES, 1999, 32 (06) :2071-2074
[9]   Thiourea-based bifunctional organocatalysis: Supramolecular recognition for living polymerization [J].
Dove, AP ;
Pratt, RC ;
Lohmeijer, BGG ;
Waymouth, RM ;
Hedrick, JL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (40) :13798-13799
[10]   The dawning era of polymer therapeutics [J].
Duncan, R .
NATURE REVIEWS DRUG DISCOVERY, 2003, 2 (05) :347-360