Transcriptional read-through of the long non-coding RNA SVALKA governs plant cold acclimation

被引:180
作者
Kindgren, Peter [1 ]
Ard, Ryan [1 ]
Ivanov, Maxim [1 ]
Marquardt, Sebastian [1 ]
机构
[1] Univ Copenhagen, Dept Plant & Environm Sci, Copenhagen Plant Sci Ctr, Bulowsvej 34, DK-1871 Frederiksberg, Denmark
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
GENOME-WIDE ANALYSIS; FUNCTIONAL CONSEQUENCES; ANTISENSE TRANSCRIPTION; REGULATORY CIRCUIT; FREEZING TOLERANCE; CBF GENES; CELL FATE; ARABIDOPSIS; EXPRESSION; OVEREXPRESSION;
D O I
10.1038/s41467-018-07010-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Most DNA in the genomes of higher organisms does not encode proteins, yet much is transcribed by RNA polymerase II (RNAPII) into long non-coding RNAs (lncRNAs). The biological significance of most lncRNAs is largely unclear. Here, we identify a lncRNA (SVALKA) in a cold-sensitive region of the Arabidopsis genome. Mutations in SVALKA affect CBF1 expression and freezing tolerance. RNAPII read-through transcription of SVALKA results in a cryptic lncRNA overlapping CBF1 on the antisense strand, termed asCBF1. Our molecular dissection reveals that CBF1 is suppressed by RNAPII collision stemming from the SVALKA-asCBF1 lncRNA cascade. The SVALKA-asCBF1 cascade provides a mechanism to tightly control CBF1 expression and timing that could be exploited to maximize freezing tolerance with mitigated fitness costs. Our results provide a compelling example of local gene regulation by lncRNA transcription having a profound impact on the ability of plants to appropriately acclimate to challenging environmental conditions.
引用
收藏
页数:11
相关论文
共 60 条
[41]   A regulatory circuit of two lncRNAs and a master regulator directs cell fate in yeast [J].
Moretto, Fabien ;
Wood, N. Ezgi ;
Kelly, Gavin ;
Doncic, Andreas ;
van Werven, Folkert J. .
NATURE COMMUNICATIONS, 2018, 9
[42]  
Nielsen Mathias, 2018, BIORXIV, DOI [10.1101/279414, DOI 10.1101/279414]
[43]   Sex-biased lethality or transmission of defective transcription machinery in arabidopsis [J].
Onodera, Yasuyuki ;
Nakagawa, Kosuke ;
Haag, Jeremy R. ;
Pikaard, Diane ;
Mikami, Tetsuo ;
Ream, Thomas ;
Ito, Yusuke ;
Pikaard, Craig S. .
GENETICS, 2008, 180 (01) :207-218
[44]   Genome-wide quantification of 5′-phosphorylated mRNA degradation intermediates for analysis of ribosome dynamics [J].
Pelechano, Vicent ;
Wei, Wu ;
Steinmetz, Lars M. .
NATURE PROTOCOLS, 2016, 11 (02) :359-376
[45]   NON-CODING RNA Gene regulation by antisense transcription [J].
Pelechano, Vicent ;
Steinmetz, Lars M. .
NATURE REVIEWS GENETICS, 2013, 14 (12) :880-893
[46]   Transcriptional termination in mammals: Stopping the RNA polymerase II juggernaut [J].
Proudfoot, Nick J. .
SCIENCE, 2016, 352 (6291)
[47]   BEDTools: a flexible suite of utilities for comparing genomic features [J].
Quinlan, Aaron R. ;
Hall, Ira M. .
BIOINFORMATICS, 2010, 26 (06) :841-842
[48]   Mutually exclusive sense-antisense transcription at FLC facilitates environmentally induced gene repression [J].
Rosa, Stefanie ;
Duncan, Susan ;
Dean, Caroline .
NATURE COMMUNICATIONS, 2016, 7
[49]   Terminating the transcript: breaking up is hard to do [J].
Rosonina, E ;
Kaneko, S ;
Manley, JL .
GENES & DEVELOPMENT, 2006, 20 (09) :1050-1056
[50]   ELF18-INDUCED LONG-NONCODING RNA Associates with Mediator to Enhance Expression of Innate Immune Response Genes in Arabidopsis [J].
Seo, Jun Sung ;
Sun, Hai-Xi ;
Park, Bong Soo ;
Huang, Chung-Hao ;
Yeh, Shyi-Dong ;
Jung, Choonkyun ;
Chua, Nam-Hai .
PLANT CELL, 2017, 29 (05) :1024-1038