Interplay between superparamagnetic and blocked behavior in an ensemble of lanthanum-strontium manganite nanoparticles

被引:16
|
作者
Kalita, V. M. [1 ,2 ]
Polishchuk, D. M. [3 ,4 ]
Kovalchuk, D. G. [1 ]
Bodnaruk, A. V. [1 ]
Solopan, S. O. [5 ]
Tovstolytkin, A. I. [3 ,4 ]
Ryabchenko, S. M. [1 ]
Belous, A. G. [3 ,4 ]
机构
[1] NAS Ukraine, Inst Phys, 46 Nauky Ave, UA-03028 Kiev, Ukraine
[2] Natl Tech Univ Ukraine, Igor Sikorsky Kyiv Polytech Inst, 37 Peremohy Ave, UA-03056 Kiev, Ukraine
[3] NAS Ukraine, Inst Magnetism, 36-B Vernadsky Ave, UA-03680 Kiev, Ukraine
[4] MES Ukraine, 36-B Vernadsky Ave, UA-03680 Kiev, Ukraine
[5] NAS Ukraine, VI Vernadskii Inst Gen & Inorgan Chem, 32-34 Palladina Ave, UA-03680 Kiev, Ukraine
关键词
MAGNETIC FLUID HYPERTHERMIA; LA1-XSRXMNO3; NANOPARTICLES; BIOMEDICAL APPLICATIONS; SUBSTITUTED MANGANITES; CANCER; TEMPERATURE; MECHANISMS; ANISOTROPY; MEDIATORS; THERAPY;
D O I
10.1039/c7cp05547a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Magnetic nanoparticles constitute promising tools for addressing medical and health-related issues based on the possibility to obtain various kinds of responses triggered by safe remote stimuli. However, such richness can be detrimental if different performances are not adequately differentiated and controlled. The aim of this work is to understand and systemize different kinds of magnetic-field-induced response for an ensemble of lanthanum-strontium manganite nanoparticles, which are considered as promising materials for self-controlled magnetic hyperthermia. A complex set of static and dynamic magnetic measurements accompanied by a numerical simulation of DC and AC magnetic behavior has been carried out. It is shown that to achieve adequate results, the dispersion of particle sizes and/or magnetic parameters should necessarily be taken into account. A quantitative description of the magnetic behavior of the ensemble should comprise two groups of nanoparticles differentiated according to the regime of their magnetization reversal: one group, which demonstrates non-hysteretic behavior similar to a superparamagnet and another one, which shows magnetic hysteresis characteristic of blocked particles. The fraction of nanoparticles in each group depends not only on the nanoparticles' parameters (in particular, their size), but also on the parameters of the external AC magnetic field (amplitude and frequency) used for remagnetization. The main outcome of this work is the development of a procedure which allows one to separately analyze contributions from different groups of nanoparticles and find the regularities of the redistribution of nanoparticles between these groups on changing the parameters of the external AC magnetic field. The results show the directions to enhance the heating efficiency of ensembles of magnetic nanoparticles and pave the way for further optimization of their characteristics and the parameters of the external field.
引用
收藏
页码:27015 / 27024
页数:10
相关论文
共 46 条
  • [1] Magnetoresistance of nanobridges of lanthanum-strontium manganite
    Berezin, VA
    Nikolaichik, VI
    Volkov, VT
    Gorbatov, YB
    Levashov, VI
    Klimenko, GL
    Tulin, VA
    Matveev, VN
    Khodos, II
    TECHNICAL PHYSICS LETTERS, 1999, 25 (05) : 398 - 401
  • [2] Magnetoresistance of nanobridges of lanthanum-strontium manganite
    V. A. Berezin
    V. I. Nikolaĭchik
    V. T. Volkov
    Yu. B. Gorbatov
    V. I. Levashov
    G. L. Klimenko
    V. A. Tulin
    V. N. Matveev
    I. I. Khodos
    Technical Physics Letters, 1999, 25
  • [3] Unusual magnetic and calorimetric properties of lanthanum-strontium manganite nanoparticles
    Tovstolytkin, A. I.
    Lytvynenko, Ya. M.
    Bodnaruk, A. V.
    Bondar, O. V.
    Kalita, V. M.
    Ryabchenko, S. M.
    Shlapa, Yu. Yu.
    Solopan, S. O.
    Belous, A. G.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2020, 498
  • [4] Multifunctionality of lanthanum-strontium manganite nanopowder
    Wei, Ziyu
    Pashchenko, A., V
    Liedienov, N. A.
    Zatovsky, I., V
    Butenko, D. S.
    Li, Quanjun
    Fesych, I., V
    Turchenko, V. A.
    Zubov, E. E.
    Polynchuk, P. Yu
    Pogrebnyak, V. G.
    Poroshin, V. M.
    Levchenko, G. G.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (21) : 11817 - 11828
  • [5] Giant baroresistance effect in lanthanum-strontium manganite nanopowder compacts
    Liedienov, N. A.
    Fesych, I. V.
    Prokopenko, V. K.
    Pogrebnyak, V. G.
    Pashchenko, A. V.
    Levchenko, G. G.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 938
  • [6] Role of Gd3+ on the magnetocaloric properties of lanthanum-strontium manganite
    Taboada-Moreno, C. A.
    Bolarin-Miro, A. M.
    Pedro-Garcia, F.
    Cortes-Escobedo, C. A.
    Sanchez-De Jesus, F.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2023, 570
  • [7] Effect of cobalt on the magnetic properties and temperature coefficient of resistance for lanthanum-strontium manganite
    I. González-García
    A. M. Bolarín-Miró
    O. Rosales-González
    J. C. Aguirre-Espinosa
    C. A. Cortés-Escobedo
    F. Sánchez-De Jesús
    Journal of Materials Science: Materials in Electronics, 2023, 34
  • [8] Effect of cobalt on the magnetic properties and temperature coefficient of resistance for lanthanum-strontium manganite
    Gonzalez-Garcia, I.
    Bolarin-Miro, A. M.
    Rosales-Gonzalez, O.
    Aguirre-Espinosa, J. C.
    Cortes-Escobedo, C. A.
    Sanchez-De Jesus, F.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (29)
  • [9] Effect of Al and Ti Substitution on the Structural and Magnetotransport Properties of Lanthanum-Strontium Manganite
    Jadava, G. D.
    Kanjariya, P. V.
    Chavda, S. K.
    Bhalodia, J. A.
    INTERNATIONAL CONFERENCE ON NANOMATERIALS FOR ENERGY CONVERSION AND STORAGE APPLICATIONS (NECSA 2018), 2018, 1961
  • [10] A lanthanum-strontium manganite: HF absorption features in the 2–30 MHz frequency range
    V. A. Berezin
    K. V. Baginskii
    V. A. Tulin
    D. A. Shulyatev
    Ya. M. Mukovskii
    Technical Physics Letters, 2001, 27 : 25 - 28