Spark plasma sintering of iodine-bearing apatite

被引:53
作者
Le Gallet, S. [1 ]
Campayo, L. [2 ]
Courtois, E. [2 ]
Hoffmann, S. [3 ]
Grin, Yu. [3 ]
Bernard, F. [1 ]
Bart, F. [2 ]
机构
[1] UMR 5209 CNRS UB, Lab Interdisciplinaire Carnot Bourgogne, F-21078 Dijon, France
[2] CEA, DEN, DTCD SECM LDMC, F-30207 Bagnols Sur Ceze, France
[3] Max Planck Inst Chem Phys Fester Stoffe, D-01187 Dresden, Germany
关键词
TEMPERATURE;
D O I
10.1016/j.jnucmat.2010.03.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The high chemical durability of iodine-bearing apatite makes it strongly prospective for conditioning of radioactive iodine. The synthesis and consolidation of iodine-bearing compounds require low temperatures to avoid iodine volatilization. Spark plasma sintering therefore appears to be a suitable process because of its shorter treatment time and lower sintering temperature compared with other processes such as HUP or HIP. Two alternatives were examined: SPS sintering of iodine-bearing apatite powder and SPS reacting of a stoichiometric lead iodide and lead phosphovanadate powder mixture. The degree of densification and the microstructure of bulk materials in both cases are described and compared. Reactive sintering appears to involve a three-stage mechanism: (i) Pbl(2) coalescence, (ii) solid-state iodoapatite synthesis and consolidation and, (iii) iodoapatite consolidation in the presence of a liquid phase. The SPS reacted products reveal the finest and most homogeneous microstructure, and a density exceeding 96%. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:251 / 256
页数:6
相关论文
共 14 条
[1]   Fundamental investigations on the spark plasma sintering/synthesis process - II. Modeling of current and temperature distributions [J].
Anselmi-Tamburini, U ;
Gennari, S ;
Garay, JE ;
Munir, ZA .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2005, 394 (1-2) :139-148
[2]  
AUDUBERT F, 1995, THESIS I NATL POLYTE
[3]   SIZE EFFECT ON MELTING TEMPERATURE OF GOLD PARTICLES [J].
BUFFAT, P ;
BOREL, JP .
PHYSICAL REVIEW A, 1976, 13 (06) :2287-2298
[4]   Spark plasma sintering of lead phosphovanadate Pb3(VO4)1.6(PO4)0.4 [J].
Campayo, L. ;
Le Gallet, S. ;
Grin, Yu. ;
Courtois, E. ;
Bernard, F. ;
Bart, F. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2009, 29 (08) :1477-1484
[5]  
CAMPAYO L, 2007, Patent No. 0758128
[6]  
CARPENA J, 1994, Patent No. 9414706
[7]   New conditionings for separated long-lived radionuclides [J].
Guy, C ;
Audubert, F ;
Lartigue, JE ;
Latrille, C ;
Advocat, T ;
Fillet, C .
COMPTES RENDUS PHYSIQUE, 2002, 3 (7-8) :827-837
[8]  
Langford J. I., 1992, ACCURACY POWDER DIFF, VII
[9]  
Maddrell ER, 2004, MATER RES SOC SYMP P, V807, P261
[10]   Temperature distribution at steady state under constant current discharge in spark sintering process of Ti and A1203 powders (vol 134, pg 225, 2003) [J].
Matsugi, K ;
Kuramoto, H ;
Hatayama, I ;
Yanagisawa, O .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2004, 146 (02) :273-281