Reduced Li diffusion barriers in composite BC3 nanotubes

被引:36
作者
Zhao, JJ [1 ]
Wen, B
Zhou, Z
Chen, ZF
Schleyer, PV
机构
[1] Dalian Univ Technol, Dept Phys, Dalian 116023, Peoples R China
[2] Dalian Univ Technol, State Key Lab Mat Modificat Laser Electron & Ion, Dalian 116023, Peoples R China
[3] Dalian Univ Technol, Dept Mat Engn, Dalian 116023, Peoples R China
[4] Nankai Univ, Inst New Energy Mat Chem, Tianjin 300071, Peoples R China
[5] Nankai Univ, Inst Comp Sci, Tianjin 300071, Peoples R China
[6] Univ Georgia, Dept Chem, Athens, GA 30602 USA
[7] Univ Georgia, Ctr Computat Chem, Athens, GA 30602 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.cplett.2005.09.024
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Facile diffusion of lithium ions in carbon nanotubes is crucial for their development as anode materials of Li ion batteries. All-electron density functional theory computations show that very high energy barriers have to be overcome when Li penetration from exohedral to endohedral sites through the perfect sidewalls of pure C and composite BC3 nanotubes. However, these barriers are reduced substantially when topological defects (seven-, eight-, and especially nine-membered rings) are present, and the effect for composite BC3 nanotubes is more significant. This suggests efficient approaches to achieve higher diffusion rates and greater Li storage capacity in nanotube-based lithium ion batteries. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:323 / 326
页数:4
相关论文
共 29 条
[1]   Efficient production of B-substituted single-wall carbon nanotubes [J].
Borowiak-Palen, E ;
Pichler, T ;
Fuentes, GG ;
Graff, A ;
Kalenczuk, RJ ;
Knupfer, M ;
Fink, J .
CHEMICAL PHYSICS LETTERS, 2003, 378 (5-6) :516-520
[2]   MECHANISMS FOR LITHIUM INSERTION IN CARBONACEOUS MATERIALS [J].
DAHN, JR ;
ZHENG, T ;
LIU, YH ;
XUE, JS .
SCIENCE, 1995, 270 (5236) :590-593
[3]   AN ALL-ELECTRON NUMERICAL-METHOD FOR SOLVING THE LOCAL DENSITY FUNCTIONAL FOR POLYATOMIC-MOLECULES [J].
DELLEY, B .
JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (01) :508-517
[4]   INTERCALATION COMPOUNDS OF GRAPHITE [J].
DRESSELHAUS, MS ;
DRESSELHAUS, G .
ADVANCES IN PHYSICS, 1981, 30 (02) :139-326
[5]   Electrochemical storage of lithium multiwalled carbon nanotubes [J].
Frackowiak, E ;
Gautier, S ;
Gaucher, H ;
Bonnamy, S ;
Beguin, F .
CARBON, 1999, 37 (01) :61-69
[6]   Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes [J].
Gao, B ;
Bower, C ;
Lorentzen, JD ;
Fleming, L ;
Kleinhammes, A ;
Tang, XP ;
McNeil, LE ;
Wu, Y ;
Zhou, O .
CHEMICAL PHYSICS LETTERS, 2000, 327 (1-2) :69-75
[7]   Electrochemical intercalation of single-walled carbon nanotubes with lithium [J].
Gao, B ;
Kleinhammes, A ;
Tang, XP ;
Bower, C ;
Fleming, L ;
Wu, Y ;
Zhou, O .
CHEMICAL PHYSICS LETTERS, 1999, 307 (3-4) :153-157
[8]   Lithium diffusion in single-walled carbon nanotubes:: a theoretical study [J].
Garau, C ;
Frontera, A ;
Quiñonero, D ;
Costa, A ;
Ballester, P ;
Deyà, PM .
CHEMICAL PHYSICS LETTERS, 2003, 374 (5-6) :548-555
[9]   Large-scale synthesis and HRTEM analysis of single-walled B- and N-doped carbon nanotube bundles [J].
Golberg, D ;
Bando, Y ;
Bourgeois, L ;
Kurashima, K ;
Sato, T .
CARBON, 2000, 38 (14) :2017-2027
[10]   Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction [J].
Golberg, D ;
Bando, Y ;
Han, W ;
Kurashima, K ;
Sato, T .
CHEMICAL PHYSICS LETTERS, 1999, 308 (3-4) :337-342