Asymptotic behavior of solutions of second order quasilinear differential equations with delay depending on the unknown function

被引:1
作者
Luo, JW [1 ]
机构
[1] Cent S Univ, Sch Math, Changsha 410075, Hunan, Peoples R China
[2] Zhongshan Univ, Sch Math & Informat Sci, Guangzhou, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
asymptotic behavior of solutions; differential equations of second order with delay;
D O I
10.1016/j.cam.2005.01.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The asymptotic behavior of the nonoscillatory solutions of quasilinear differential equations of second order with delay depending on the unknown function is considered. The main results given by [Bainov et al. (J. Comput. Appl. Math. 91 (1998) 87-96) and Wong (Funkcial. Ekvac. 11 (1968) 207-234)] are improved and generalized. (c) 2005 Published by Elsevier B.V.
引用
收藏
页码:133 / 143
页数:11
相关论文
共 11 条
[1]   ON OSCILLATION OF SOLUTIONS OF FORCED FUNCTIONAL-DIFFERENTIAL EQUATIONS OF 2ND ORDER [J].
ANGELOVA, DC ;
BAINOV, DD .
MATHEMATISCHE NACHRICHTEN, 1985, 122 :289-300
[2]  
ANGELOVA DC, 1982, MATH REP TOYAMA U, V1, P1
[3]   Asymptotic behaviour of the nonoscillatory solutions of differential equations of second order with delay depending on the unknown function [J].
Bainov, DD ;
Markova, NT ;
Simeonov, PS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 91 (01) :87-96
[4]  
DELPINO M, 1991, HOUSTON J MATH, V17, P63
[5]   OSCILLATION AND NON-OSCILLATION THEOREMS FOR A CLASS OF 2ND-ORDER QUASI-LINEAR DIFFERENTIAL-EQUATIONS [J].
ELBERT, A ;
KUSANO, T .
ACTA MATHEMATICA HUNGARICA, 1990, 56 (3-4) :325-336
[6]  
Kitano M., 1995, Hiroshima Math. J., V25, P321
[7]  
Kusano T., 1995, J. Math. Anal. Appl, V189, P115
[8]  
Kusano T., 1994, Differential Equations Dynam. Systems, V2, P1
[9]   ASYMPTOTIC-BEHAVIOR OF SOLUTIONS OF 2ND ORDER DIFFERENTIAL-EQUATIONS WITH INTEGRABLE COEFFICIENTS [J].
NAITO, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) :577-588
[10]   GENERALIZED EMDEN-FOWLER EQUATION [J].
WONG, JSW .
SIAM REVIEW, 1975, 17 (02) :339-360