An optimal system and group-invariant solutions of the Cox-Ingersoll-Ross pricing equation

被引:21
作者
Sinkala, W. [2 ]
Leach, P. G. L. [3 ]
O'Hara, J. G. [1 ]
机构
[1] Univ KwaZulu Natal, Sch Stat & Actuarial Sci, ZA-4041 Durban, South Africa
[2] Walter Sisulu Univ, Dept Math & Appl Math, Fac Sci & Engn, ZA-5117 Mthatha, South Africa
[3] Univ KwaZulu Natal, Sch Math Sci, Howard Coll, ZA-4041 Durban, South Africa
关键词
CIR; Lie algebra; interest rate derivatives; optimal system; partial differential equations;
D O I
10.1016/j.amc.2007.12.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The valuation partial differential equation of standard European interest rate derivatives in the Cox-Ingersoll-Ross model is analysed. Its one-parameter Lie point symmetries and corresponding group of adjoint representations are obtained. An optimal system of one-dimensional subalgebras is derived and used to construct distinct families of special closed-form solutions of the equation. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:95 / 107
页数:13
相关论文
共 19 条
[1]  
Andrews L C, 1998, SPIE, V2nd
[2]  
[Anonymous], APPL MATH
[3]  
[Anonymous], 1991, SYSTEM DOING MATH CO
[4]  
Bluman GW, 1989, APPL MATH SCI, V81
[5]   AN INTERTEMPORAL GENERAL EQUILIBRIUM-MODEL OF ASSET PRICES [J].
COX, JC ;
INGERSOLL, JE ;
ROSS, SA .
ECONOMETRICA, 1985, 53 (02) :363-384
[6]  
DRESNER L, 1999, APPLICATIONS LIES TH
[7]   Lie symmetry analysis of differential equations in finance [J].
Gazizov, RK ;
Ibragimov, NH .
NONLINEAR DYNAMICS, 1998, 17 (04) :387-407
[8]   LIE, A PC PROGRAM FOR LIE ANALYSIS OF DIFFERENTIAL-EQUATIONS [J].
HEAD, AK .
COMPUTER PHYSICS COMMUNICATIONS, 1993, 77 (02) :241-248
[9]  
HEREMAN W, 1994, EUROMATH B, V1, P45
[10]  
HEREMAN W, 1995, CRC HDB LIE GROUP AN, V3