Ensemble habitat selection modeling is becoming a popular approach among ecologists to answer different questions. Since we are still in the early stages of development and application of ensemble modeling, there remain many questions regarding performance and parameterization. One important gap, which this paper addresses, is how the number of background points used to train models influences the performance of the ensemble model. We used an empirical presence-only dataset and three different selections of background points to train scale-optimized habitat selection models using six modeling algorithms (GLM, GAM, MARS, ANN, Random Forest, and MaxEnt). We tested four ensemble models using different combinations of the component models: (a) equal numbers of background points and presences, (b) background points equaled ten times the number of presences, (c) 10,000 background points, and (d) optimized background points for each component model. Among regression-based approaches, MARS performed best when built with 10,000 background points. Among machine learning models, RF performed the best when built with equal presences and background points. Among the four ensemble models, AUC indicated that the best performing model was the ensemble with each component model including the optimized number of background points, while TSS increased as the number of background points models increased. We found that an ensemble of models, each trained with an optimal number of background points, outperformed ensembles of models trained with the same number of background points, although differences in performance were slight. When using a single modeling method, RF with equal number of presences and background points can perform better than an ensemble model, but the performance fluctuates when the number of background points is not properly selected. On the other hand, ensemble modeling provides consistently high accuracy regardless of background point sampling approach. Further, optimizing the number of background points for each component model within an ensemble model can provide the best model improvement. We suggest evaluating more models across multiple species to investigate how background point selection might affect ensemble models in different scenarios.