Reverse genetics systems for SARS-CoV-2

被引:20
作者
Wang, Wenhao
Peng, Xiaoxue
Jin, Yunyun
Pan, Ji-An [1 ,2 ]
Guo, Deyin [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Ctr Infect & Immun Study, 66 Gongchang Rd, Shenzhen 518107, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Mol Canc Res Ctr, Sch Med, 66 Gongchang Rd,Shenzhen Campus, Shenzhen 518107, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
BAC; CPER; reverse genetics systems; SARS-CoV-2; TAR; LENGTH INFECTIOUS CDNA; TRANSFORMATION-ASSOCIATED RECOMBINATION; RNA RECOMBINATION; IN-VITRO; CORONAVIRUS; CLONE; DNA; GENOME; CONSTRUCTION; SEQUENCE;
D O I
10.1002/jmv.27738
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The ongoing pandemic of coronavirus disease 2019 (COVID-19) has caused severe public health crises and heavy economic losses. Limited knowledge about this deadly virus impairs our capacity to set up a toolkit against it. Thus, more studies on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) biology are urgently needed. Reverse genetics systems, including viral infectious clones and replicons, are powerful platforms for viral research projects, spanning many aspects such as the rescues of wild-type or mutant viral particles, the investigation of viral replication mechanism, the characterization of viral protein functions, and the studies on viral pathogenesis and antiviral drug development. The operations on viral infectious clones are strictly limited in the Biosafety Level 3 (BSL3) facilities, which are insufficient, especially during the pandemic. In contrast, the operation on the noninfectious replicon can be performed in Biosafety Level 2 (BSL2) facilities, which are widely available. After the outbreak of COVID-19, many reverse genetics systems for SARS-CoV-2, including infectious clones and replicons are developed and given plenty of options for researchers to pick up according to the requirement of their research works. In this review, we summarize the available reverse genetics systems for SARS-CoV-2, by highlighting the features of these systems, and provide a quick guide for researchers, especially those without ample experience in operating viral reverse genetics systems.
引用
收藏
页码:3017 / 3031
页数:15
相关论文
共 81 条
[1]   Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome [J].
Almazán, F ;
González, JM ;
Pénzes, Z ;
Izeta, A ;
Calvo, E ;
Plana-Durán, J ;
Enjuanes, L .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (10) :5516-5521
[2]   Construction of a severe acute respiratory syndrome coronavirus infectious cDNA clone and a replicon to study coronavirus RNA synthesis [J].
Almazan, Fernando ;
DeDiego, Marta L. ;
Galan, Carmen ;
Escors, David ;
Alvarez, Enrique ;
Ortego, Javier ;
Sola, Isabel ;
Zuniga, Sonia ;
Alonso, Sara ;
Moreno, Jose L. ;
Nogales, Aitor ;
Capiscol, Carmen ;
Enjuanes, Luis .
JOURNAL OF VIROLOGY, 2006, 80 (21) :10900-10906
[3]   Coronavirus reverse genetic systems: Infectious clones and replicons [J].
Almazan, Fernando ;
Sola, Isabel ;
Zuniga, Sonia ;
Marquez-Jurado, Silvia ;
Morales, Lucia ;
Becares, Martina ;
Enjuanes, Luis .
VIRUS RESEARCH, 2014, 189 :262-270
[4]   Engineering a Replication-Competent, Propagation-Defective Middle East Respiratory Syndrome Coronavirus as a Vaccine Candidate [J].
Almazan, Fernando ;
DeDiego, Marta L. ;
Sola, Isabel ;
Zuniga, Sonia ;
Nieto-Torres, Jose L. ;
Marquez-Jurado, Silvia ;
Andres, German ;
Enjuanes, Luis .
MBIO, 2013, 4 (05)
[5]   A versatile reverse genetics platform for SARS-CoV-2 and other positive-strand RNA viruses [J].
Amarilla, Alberto A. ;
Sng, Julian D. J. ;
Parry, Rhys ;
Deerain, Joshua M. ;
Potter, James R. ;
Setoh, Yin Xiang ;
Rawle, Daniel J. ;
Le, Thuy T. ;
Modhiran, Naphak ;
Wang, Xiaohui ;
Peng, Nias Y. G. ;
Torres, Francisco J. ;
Pyke, Alyssa ;
Harrison, Jessica J. ;
Freney, Morgan E. ;
Liang, Benjamin ;
McMillan, Christopher L. D. ;
Cheung, Stacey T. M. ;
Guevara, Darwin J. Da Costa ;
Hardy, Joshua M. ;
Bettington, Mark ;
Muller, David A. ;
Coulibaly, Fasseli ;
Moore, Frederick ;
Hall, Roy A. ;
Young, Paul R. ;
Mackenzie, Jason M. ;
Hobson-Peters, Jody ;
Suhrbier, Andreas ;
Watterson, Daniel ;
Khromykh, Alexander A. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[6]   Molecular Characterization of Feline Infectious Peritonitis Virus Strain DF-2 and Studies of the Role of ORF3abc in Viral Cell Tropism [J].
Balint, Adam ;
Farsang, Attila ;
Zadori, Zoltan ;
Hornyak, Akos ;
Dencso, Laszlo ;
Almazan, Fernando ;
Enjuanes, Luis ;
Belak, Sandor .
JOURNAL OF VIROLOGY, 2012, 86 (11) :6258-6267
[7]   ESTABLISHING A GENETIC-RECOMBINATION MAP FOR MURINE CORONAVIRUS STRAIN A59 COMPLEMENTATION GROUPS [J].
BARIC, RS ;
FU, K ;
SCHAAD, MC ;
STOHLMAN, SA .
VIROLOGY, 1990, 177 (02) :646-656
[8]   Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice [J].
Becker, Michelle M. ;
Graham, Rachel L. ;
Donaldson, Eric F. ;
Rockx, Barry ;
Sims, Amy C. ;
Sheahan, Timothy ;
Pickles, Raymond J. ;
Corti, Davide ;
Johnston, Robert E. ;
Baric, Ralph S. ;
Denison, Mark R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (50) :19944-19949
[9]  
Cascella M, 2020, Features, evaluation, and treatment of coronavirus (COVID-19)
[10]   Emerging coronaviruses: Genome structure, replication, and pathogenesis [J].
Chen, Yu ;
Liu, Qianyun ;
Guo, Deyin .
JOURNAL OF MEDICAL VIROLOGY, 2020, 92 (04) :418-423