Designed Polymer Micelle for Clearing Amyloid Protein Aggregates via Up-Regulated Autophagy

被引:30
作者
Debnath, Koushik [1 ]
Jana, Nihar R. [2 ,3 ]
Jana, Nikhil R. [1 ]
机构
[1] Indian Assoc Cultivat Sci, Ctr Adv Mat, 2A & 2B Raja SC Mullick Rd, Kolkata 700032, India
[2] Natl Brain Res Ctr, Cellular & Mol Neurosci Lab, Manesar NH-8, Gurgaon 122051, India
[3] Indian Inst Technol, Sch Biosci, Kharagpur 721302, W Bengal, India
关键词
nanoparticle; amyloid; polyglutamine; autophagy; neurodegenerative disease; NEURODEGENERATIVE DISEASES; NANOPARTICLES; OLIGOMERS; TOXICITY; ACCUMULATION; PATHOGENESIS; MECHANISMS;
D O I
10.1021/acsbiomaterials.8b01196
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Inhibiting protein aggregation under intra-/extracellular space and clearing protein aggregates from the brain are two critical issues for the treatment of various neurodegenerative diseases. Although a variety of anti-amyloidogenic chemicals/biochemicals have been identified for inhibiting such protein aggregation, clearing protein aggregates is a challenging issue. Here we report a designed biopolymer micelle of 15-30 nm hydrodynamic size that can clear protein aggregates from cells via an up-regulated autophagy process. The polymer has a polyaspartic acid backbone and is functionalized with fatty amine, arginine, and primary amine for inducing self-assembly, enhancing cell uptake, and up-regulating autophagy processes, respectively. The polymer micelle (PM) enters into the cell via lipid raft endocytosis, is transported to the perinuclear region where the protein oligomer/aggregate predominantly localizes, clears aggregated protein from the cell, and enhances the cell's survival against toxic protein aggregates. The designed PM may be used as a drug delivery carrier for anti-amyloidogenic drugs for enhanced efficacy in the treatment of neurodegenerative diseases.
引用
收藏
页码:390 / 401
页数:23
相关论文
共 36 条
  • [1] Clathrin to Lipid Raft-Endocytosis via Controlled Surface Chemistry and Efficient Perinuclear Targeting of Nanoparticle
    Chakraborty, Atanu
    Jana, Nikhil R.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (18): : 3688 - 3697
  • [2] Alzheimer's disease drug-development pipeline: few candidates, frequent failures
    Cummings, Jeffrey L.
    Morstorf, Travis
    Zhong, Kate
    [J]. ALZHEIMERS RESEARCH & THERAPY, 2014, 6 (04)
  • [3] Poly(trehalose) Nanoparticles Prevent Amyloid Aggregation and Suppress Polyglutamine Aggregation in a Huntington's Disease Model Mouse
    Debnath, Koushik
    Pradhan, Nibedita
    Singh, Brijesh Kumar
    Jana, Nihar R.
    Jana, Nikhil R.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (28) : 24126 - 24139
  • [4] Efficient Inhibition of Protein Aggregation, Disintegration of Aggregates, and Lowering of Cytotoxicity by Green Tea Polyphenol-Based Self-Assembled Polymer Nanoparticles
    Debnath, Koushik
    Shekhar, Shashi
    Kumar, Vipendra
    Jana, Nihar R.
    Jana, Nikhil R.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (31) : 20309 - 20318
  • [5] Phase Transfer and Surface Functionalization of Hydrophobic Nanoparticle using Amphiphilic Poly(amino acid)
    Debnath, Koushik
    Mandal, Kuheli
    Jana, Nikhil R.
    [J]. LANGMUIR, 2016, 32 (11) : 2798 - 2807
  • [6] Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: possible implications for Parkinson's disease
    Filomeni, Giuseppe
    Graziani, Ilaria
    De Zio, Daniela
    Dini, Luciana
    Centonze, Diego
    Rotilio, Giuseppe
    Ciriolo, Maria R.
    [J]. NEUROBIOLOGY OF AGING, 2012, 33 (04) : 767 - 785
  • [7] Lithium delays progression of amyotrophic lateral sclerosis
    Fornai, Francesco
    Longone, Patrizia
    Cafaro, Luisa
    Kastsiuchenka, Olga
    Ferrucci, Michela
    Manca, Maria Laura
    Lazzeri, Gloria
    Spalloni, Alicia
    Bellio, Natascia
    Lenzi, Paola
    Modugno, Nicola
    Siciliano, Gabriele
    Isicloro, Ciro
    Murri, Luigi
    Ruggieri, Stefano
    Paparelli, Antonio
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (06) : 2052 - 2057
  • [8] Autophagy in neurodegenerative diseases: pathogenesis and therapy
    Guo, Fang
    Liu, Xinyao
    Cai, Huaibin
    Le, Weidong
    [J]. BRAIN PATHOLOGY, 2018, 28 (01) : 3 - 13
  • [9] Nanoparticles modulate autophagic effect in a dispersity-dependent manner
    Huang, Dengtong
    Zhou, Hualu
    Gao, Jinhao
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [10] Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)
    Klionsky, Daniel J.
    Abdelmohsen, Kotb
    Abe, Akihisa
    Abedin, Md Joynal
    Abeliovich, Hagai
    Arozena, Abraham Acevedo
    Adachi, Hiroaki
    Adams, Christopher M.
    Adams, Peter D.
    Adeli, Khosrow
    Adhihetty, Peter J.
    Adler, Sharon G.
    Agam, Galila
    Agarwal, Rajesh
    Aghi, Manish K.
    Agnello, Maria
    Agostinis, Patrizia
    Aguilar, Patricia V.
    Aguirre-Ghiso, Julio
    Airoldi, Edoardo M.
    Ait-Si-Ali, Slimane
    Akematsu, Takahiko
    Akporiaye, Emmanuel T.
    Al-Rubeai, Mohamed
    Albaiceta, Guillermo M.
    Albanese, Chris
    Albani, Diego
    Albert, Matthew L.
    Aldudo, Jesus
    Alguel, Hana
    Alirezaei, Mehrdad
    Alloza, Iraide
    Almasan, Alexandru
    Almonte-Beceril, Maylin
    Alnemri, Emad S.
    Alonso, Covadonga
    Altan-Bonnet, Nihal
    Altieri, Dario C.
    Alvarez, Silvia
    Alvarez-Erviti, Lydia
    Alves, Sandro
    Amadoro, Giuseppina
    Amano, Atsuo
    Amantini, Consuelo
    Ambrosio, Santiago
    Amelio, Ivano
    Amer, Amal O.
    Amessou, Mohamed
    Amon, Angelika
    An, Zhenyi
    [J]. AUTOPHAGY, 2016, 12 (01) : 1 - 222