Nanoscale Poroelasticity of the Tectorial Membrane Determines Hair Bundle Deflections

被引:5
作者
Sellon, Jonathan B. [1 ]
Azadi, Mojtaba [2 ,3 ,4 ]
Oftadeh, Ramin [3 ,4 ]
Nia, Hadi Tavakoli [5 ]
Ghaffari, Roozbeh [1 ]
Grodzinsky, Alan J. [3 ,4 ,6 ,7 ]
Freeman, Dennis M. [1 ,6 ]
机构
[1] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[2] San Francisco State Univ, Coll Sci & Engn, Sch Engn, San Francisco, CA 94132 USA
[3] MIT, Ctr Biomed Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] MIT, Dept Biol Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[5] Harvard Med Sch, Massachusetts Gen Hosp, Boston, MA 02114 USA
[6] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[7] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
TRAVELING-WAVES; COCHLEAR MICROMECHANICS; CARTILAGE; TRANSMISSION; REVEALS; ORGAN; MODEL; EXCITATION; COLLAGEN; SPREAD;
D O I
10.1103/PhysRevLett.122.028101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Stereociliary imprints in the tectorial membrane (TM) have been taken as evidence that outer hair cells are sensitive to shearing displacements of the TM, which plays a key role in shaping cochlear sensitivity and frequency selectivity via resonance and traveling wave mechanisms. However, the TM is highly hydrated (97% water by weight), suggesting that the TM may be flexible even at the level of single hair cells. Here we show that nanoscale oscillatory displacements of microscale spherical probes in contact with the TM are resisted by frequency-dependent forces that are in phase with TM displacement at low and high frequencies, but are in phase with TM velocity at transition frequencies. The phase lead can be as much as a quarter of a cycle, thereby contributing to frequency selectivity and stability of cochlear amplification.
引用
收藏
页数:6
相关论文
共 53 条
[1]   Deformations of the isolated mouse tectorial membrane produced by oscillatory forces [J].
Abnet, CC ;
Freeman, DM .
HEARING RESEARCH, 2000, 144 (1-2) :29-46
[2]   COCHLEAR MICROMECHANICS - A PHYSICAL MODEL OF TRANSDUCTION [J].
ALLEN, JB .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1980, 68 (06) :1660-1670
[3]   Tectorins crosslink type II collagen fibrils and connect the tectorial membrane to the spiral limbus [J].
Andrade, Leonardo R. ;
Salles, Felipe T. ;
Grati, M'hamed ;
Manor, Uri ;
Kachar, Bechara .
JOURNAL OF STRUCTURAL BIOLOGY, 2016, 194 (02) :139-146
[4]  
[Anonymous], 1988, MATLAB USERS GUIDE
[5]   Wide bandwidth nanomechanical assessment of murine cartilage reveals protection of aggrecan knock-in mice from joint-overuse [J].
Azadi, Mojtaba ;
Nia, Hadi Tavakoli ;
Gauci, Stephanie J. ;
Ortiz, Christine ;
Fosang, Amanda J. ;
Grodzinsky, Alan J. .
JOURNAL OF BIOMECHANICS, 2016, 49 (09) :1634-1640
[6]   TRANSMISSION OF RADIAL SHEAR FORCES TO COCHLEAR HAIR CELLS [J].
BILLONE, M ;
RAYNOR, S .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1973, 54 (05) :1143-1156
[7]   Compensator design for improved counterbalancing in high speed atomic force microscopy [J].
Bozchalooi, I. S. ;
Youcef-Toumi, K. ;
Burns, D. J. ;
Fantner, G. E. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (11)
[8]   Tendon exhibits complex poroelastic behavior at the nanoscale as revealed by high-frequency AFM-based rheology [J].
Connizzo, Brianne K. ;
Grodzinsky, Alan J. .
JOURNAL OF BIOMECHANICS, 2017, 54 :11-18
[9]   The response of guinea pig primary utricular and saccular irregular neurons to bone-conducted vibration (BCV) and air-conducted, sound (ACS) [J].
Curthoys, Ian S. ;
Vulovic, Vedran ;
Burgess, Ann M. ;
Sokolic, Ljiljana ;
Goonetilleke, Samanthi C. .
HEARING RESEARCH, 2016, 331 :131-143
[10]  
DALLOS P, 1972, SCIENCE, V177, P356, DOI 10.1126/science.177.4046.356