Multivariate Approach to Single-Molecule Thermopower and Electrical Conductance Measurements

被引:3
作者
Hamill, Joseph M. [1 ]
Weaver, Christopher [1 ]
Albrecht, Tim [1 ]
机构
[1] Univ Birmingham, Sch Chem, Birmingham B15 2TT, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
BREAK JUNCTION; THERMOELECTRICITY; ALIGNMENT;
D O I
10.1021/acs.jpcc.1c08608
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report a method using scanning tunneling microscope single molecular break junction to simultaneously measure and correlate the single-molecule thermopower and electrical conductance. In contrast to previously reported approaches, it does not require custom-built electronics and takes advantage of a trace-by-trace calibration of the thermal offset at the Au/Au contact, thus greatly facilitating thermoelectric measurements at the single-molecule level. We report measurements of three molecules, 1,4-di(4-(ethynyl(phenylthioacetate))) benzene, 1,8-octanedithiol, and 4,4'-bipyridine, and determine single-molecule Seebeck coefficients of 12(3), 5(2), and -5(2) mu V K-1, respectively. Furthermore, the method statistically correlates the Seebeck voltage offset, electrical conductance, and stretching displacement of the single-molecule junction and allows for direct comparison with current-distance spectroscopy results obtained at constant bias.
引用
收藏
页码:26256 / 26262
页数:7
相关论文
共 39 条
[1]   Deep learning for single-molecule science [J].
Albrecht, Tim ;
Slabaugh, Gregory ;
Alonso, Eduardo ;
Al-Arif, S. M. Masudur R. .
NANOTECHNOLOGY, 2017, 28 (42)
[2]   Giant Thermoelectric Effect from Transmission Supernodes [J].
Bergfield, Justin P. ;
Solis, Michelle A. ;
Stafford, Charles A. .
ACS NANO, 2010, 4 (09) :5314-5320
[3]   A reference-free clustering method for the analysis of molecular break-junction measurements [J].
Cabosart, Damien ;
El Abbassi, Maria ;
Stefani, Davide ;
Frisenda, Riccardo ;
Calame, Michel ;
van der Zant, Herre S. J. ;
Perrin, Mickael L. .
APPLIED PHYSICS LETTERS, 2019, 114 (14)
[4]   Perspective: Thermal and thermoelectric transport in molecular junctions [J].
Cui, Longji ;
Miao, Ruijiao ;
Jiang, Chang ;
Meyhofer, Edgar ;
Reddy, Pramod .
JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (09)
[5]   Theoretical efficiency limits for energy conversion devices [J].
Cullen, Jonathan M. ;
Allwood, Julian M. .
ENERGY, 2010, 35 (05) :2059-2069
[6]   Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions [J].
Dubi, Yonatan ;
Di Ventra, Massimiliano .
REVIEWS OF MODERN PHYSICS, 2011, 83 (01) :131-155
[7]   Quantum Thermopower of Metallic Atomic-Size Contacts at Room Temperature [J].
Evangeli, Charalambos ;
Matt, Manuel ;
Rincon-Garcia, Laura ;
Pauly, Fabian ;
Nielaba, Peter ;
Rubio-Bollinger, Gabino ;
Carlos Cuevas, Juan ;
Agrait, Nicolas .
NANO LETTERS, 2015, 15 (02) :1006-1011
[8]   Suppression of Phonon Transport in Molecular Christmas Trees [J].
Famili, Marjan ;
Grace, Iain ;
Sadeghi, Hatef ;
Lambert, Colin J. .
CHEMPHYSCHEM, 2017, 18 (10) :1234-1241
[9]   Estimating the global waste heat potential [J].
Forman, Clemens ;
Muritala, Ibrahim Kolawole ;
Pardemann, Robert ;
Meyer, Bernd .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 57 :1568-1579
[10]   Efficient heating of single-molecule junctions for thermoelectric studies at cryogenic temperatures [J].
Gehring, Pascal ;
van der Star, Martijn ;
Evangeli, Charalambos ;
Le Roy, Jennifer J. ;
Bogani, Lapo ;
Kolosov, Oleg, V ;
van der Zant, Herre S. J. .
APPLIED PHYSICS LETTERS, 2019, 115 (07)