Iterative refinement for symmetric eigenvalue decomposition

被引:20
作者
Ogita, Takeshi [1 ]
Aishima, Kensuke [2 ]
机构
[1] Tokyo Womans Christian Univ, Sch Arts & Sci, Div Math Sci, Suginami Ku, 2-6-1 Zempukuji, Tokyo 1678585, Japan
[2] Hosei Univ, Fac Comp & Informat Sci, 3-7-2 Kajino Cho, Koganei, Tokyo 1848584, Japan
关键词
Accurate numerical algorithm; Iterative refinement; Symmetric eigenvalue decomposition; Quadratic convergence; FAITHFUL;
D O I
10.1007/s13160-018-0310-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An efficient refinement algorithm is proposed for symmetric eigenvalue problems. The structure of the algorithm is straightforward, primarily comprising matrix multiplications. We show that the proposed algorithm converges quadratically if a modestly accurate initial guess is given, including the case of multiple eigenvalues. Our convergence analysis can be extended to Hermitian matrices. Numerical results demonstrate excellent performance of the proposed algorithm in terms of convergence rate and overall computational cost, and show that the proposed algorithm is considerably faster than a standard approach using multiple-precision arithmetic.
引用
收藏
页码:1007 / 1035
页数:29
相关论文
共 32 条
[1]   A Grassmann-Rayleigh quotient iteration for computing invariant subspaces [J].
Absil, PA ;
Mahony, R ;
Sepulchre, R ;
Van Dooren, P .
SIAM REVIEW, 2002, 44 (01) :57-73
[2]   Spectral refinement on quasi-diagonal matrices [J].
Ahues, M ;
Largillier, A ;
d'Almeida, FD ;
Vasconcelos, PB .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 401 :109-117
[3]  
Anderson E., 1999, LAPACK Users' Guide, V3
[4]  
[Anonymous], GNU MPFR LIB COD DOC
[5]  
[Anonymous], 2013, MATRIX COMPUTATIONS
[6]  
[Anonymous], 2002, Accuracy and stability of numerical algorithms
[7]  
[Anonymous], 1965, The algebraic eigenvalue problem
[8]  
[Anonymous], 2008, Functions of matrices: theory and computation
[9]  
[Anonymous], 1997, Applied numerical linear algebra
[10]  
[Anonymous], GNU MULT PREC AR LIB