Triplet Energy Transfer from Ruthenium Complexes to Chiral Eniminium Ions: Enantioselective Synthesis of Cyclobutanecarbaldehydes by [2+2] Photocycloaddition

被引:59
作者
Hoermann, Fabian M. [1 ,2 ]
Kerzig, Christoph [3 ]
Chung, Tim S. [1 ,2 ]
Bauer, Andreas [1 ,2 ]
Wenger, Oliver S. [3 ]
Bach, Thorsten [1 ,2 ]
机构
[1] Tech Univ Munich, Dept Chem, Lichtenbergstr 4, D-85747 Garching, Germany
[2] Tech Univ Munich, Catalysis Res Ctr, Lichtenbergstr 4, D-85747 Garching, Germany
[3] Univ Basel, Dept Chem, St Johanns Ring 19, CH-4056 Basel, Switzerland
基金
欧洲研究理事会;
关键词
cycloaddition; enantioselectivity; homogenous catalysis; photochemistry; ruthenium; ELECTRON-TRANSFER; UP-CONVERSION; PHOTOREDOX CATALYSIS; ORGANIC CATALYSIS; SILYL ETHERS; ENONE-OLEFIN; IMINIUM; STATE; PHOTOCHEMISTRY; CYCLOADDITION;
D O I
10.1002/anie.202001634
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Chiral eniminium salts, prepared from alpha,beta-unsaturated aldehydes and a chiral proline derived secondary amine, underwent, upon irradiation with visible light, a ruthenium-catalyzed (2.5 mol %) intermolecular [2+2] photocycloaddition to olefins, which after hydrolysis led to chiral cyclobutanecarbaldehydes (17 examples, 49-74 % yield), with high diastereo- and enantioselectivities. Ru(bpz)(3)(PF6)(2) was utilized as the ruthenium catalyst and laser flash photolysis studies show that the catalyst operates exclusively by triplet-energy transfer (sensitization). A catalytic system was devised with a chiral secondary amine co-catalyst. In the catalytic reactions, Ru(bpy)(3)(PF6)(2) was employed, and laser flash photolysis experiments suggest it undergoes both electron and energy transfer. However, experimental evidence supports the hypothesis that energy transfer is the only productive quenching mechanism. Control experiments using Ir(ppy)(3) showed no catalysis for the intermolecular [2+2] photocycloaddition of an eniminium ion.
引用
收藏
页码:9659 / 9668
页数:10
相关论文
共 87 条
[1]   New strategies for organic catalysis: The first highly enantioselective organocatalytic Diels-Alder reaction [J].
Ahrendt, KA ;
Borths, CJ ;
MacMillan, DWC .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (17) :4243-4244
[2]   Photo-Organocatalytic Enantioselective Radical Cascade Enabled by Single-Electron Transfer Activation of Allenes [J].
Alessandro Perego, Luca ;
Bonilla, Pablo ;
Melchiorre, Paolo .
ADVANCED SYNTHESIS & CATALYSIS, 2020, 362 (02) :302-307
[3]  
[Anonymous], 2019, Angew. Chem, V131, P1600, DOI DOI 10.1002/ANGE.201803102
[4]  
[Anonymous], 1971, ANGEW CHEM
[5]   The photophysics of photoredox catalysis: a roadmap for catalyst design [J].
Arias-Rotondo, Daniela M. ;
McCusker, James K. .
CHEMICAL SOCIETY REVIEWS, 2016, 45 (21) :5803-5820
[6]   Organocatalysis-after the gold rush [J].
Bertelsen, Soren ;
Jorgensen, Karl Anker .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (08) :2178-2189
[7]   Enantioselective photochemistry through Lewis acid-catalyzed triplet energy transfer [J].
Blum, Travis R. ;
Miller, Zachary D. ;
Bates, Desiree M. ;
Guzei, Ilia A. ;
Yoon, Tehshik P. .
SCIENCE, 2016, 354 (6318) :1391-1395
[8]  
Bonilla P., 2018, ANGEW CHEM, V130, P13001
[9]   Photo-Organocatalytic Enantioselective Radical Cascade Reactions of Unactivated Olefins [J].
Bonilla, Pablo ;
Rey, Yannick P. ;
Holden, Catherine M. ;
Melchiorre, Paolo .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (39) :12819-12823
[10]  
Brazier JB, 2009, TOP CURR CHEM, V291, P281, DOI [10.1007/128_2008_28, 10.1007/978-3-642-02815-1_28]