Deep Recurrent Neural Networks for Prostate Cancer Detection: Analysis of Temporal Enhanced Ultrasound

被引:52
作者
Azizi, Shekoofeh [1 ]
Bayat, Sharareh
Yan, Pingkun [2 ]
Tahmasebi, Amir [3 ]
Kwak, Jin Tae [4 ]
Xu, Sheng [5 ]
Turkbey, Baris [5 ]
Choyke, Peter [5 ]
Pinto, Peter [5 ]
Wood, Bradford [5 ]
Mousavi, Parvin [6 ]
Abolmaesumi, Purang [1 ]
机构
[1] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada
[2] Rensselaer Polytech Inst, Troy, NY 12180 USA
[3] Philips Res North Amer, Cambridge, MA 02141 USA
[4] Sejong Univ, Dept Comp Engn, Seoul 143747, South Korea
[5] NIH, Res Ctr, Bldg 10, Bethesda, MD 20892 USA
[6] Queens Univ, Sch Comp, Kingston, ON K7L 3N6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Temporal enhanced ultrasound; deep learning; recurrent neural network; long short-termmemory; prostate cancer; cancer detection; MULTI-PARAMETRIC MRI; BIOPSY; RF; FUSION; CLASSIFICATION; DIAGNOSIS;
D O I
10.1109/TMI.2018.2849959
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Temporal enhanced ultrasound (TeUS), comprising the analysis of variations in backscattered signals from a tissue over a sequence of ultrasound frames, has been previously proposed as a new paradigm for tissue characterization. In this paper, we propose to use deep recurrent neural networks (RNN) to explicitly model the temporal information in TeUS. By investigating several RNN models, we demonstrate that long short-term memory (LSTM) networks achieve the highest accuracyin separating cancer from benign tissue in the prostate. We also present algorithms for in-depth analysis of LSTM networks. Our in vivo study includes data from 255 prostate biopsy cores of 157 patients. We achieve area under the curve, sensitivity, specificity, and accuracy of 0.96, 0.76, 0.98, and 0.93, respectively. Our result suggests that temporal modeling of TeUS using RNN can significantly improve cancer detection accuracy over previously presented works.
引用
收藏
页码:2695 / 2703
页数:9
相关论文
共 49 条
[1]  
Abadi M., 2016, TENSORFLOW LARGESCAL
[2]   Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study [J].
Ahmed, Hashim U. ;
Bosaily, Ahmed El-Shater ;
Brown, Louise C. ;
Gabe, Rhian ;
Kaplan, Richard ;
Parmar, Mahesh K. ;
Collaco-Moraes, Yolanda ;
Ward, Katie ;
Hindley, Richard G. ;
Freeman, Alex ;
Kirkham, Alex P. ;
Oldroyd, Robert ;
Parker, Chris ;
Emberton, Mark .
LANCET, 2017, 389 (10071) :815-822
[3]  
[Anonymous], 2017, A survey on deep learning in medical image analysis
[4]  
[Anonymous], P SPIE SPIE
[5]  
[Anonymous], P SPIE
[6]  
Azizi Shekoofeh, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9900, P653, DOI 10.1007/978-3-319-46720-7_76
[7]  
Azizi S., 2018, INT J COMPUT ASSIST, P1, DOI DOI 10.1007/S11548-018-1749-Z#CITEAS
[8]   Detection and grading of prostate cancer using temporal enhanced ultrasound: combining deep neural networks and tissue mimicking simulations [J].
Azizi, Shekoofeh ;
Bayat, Sharareh ;
Yan, Pingkun ;
Tahmasebi, Amir ;
Nir, Guy ;
Kwak, Jin Tae ;
Xu, Sheng ;
Wilson, Storey ;
Iczkowski, Kenneth A. ;
Lucia, M. Scott ;
Goldenberg, Larry ;
Salcudean, Septimiu E. ;
Pinto, Peter A. ;
Wood, Bradford ;
Abolmaesumi, Purang ;
Mousavi, Parvin .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2017, 12 (08) :1293-1305
[9]   Transfer learning from RF to B-mode temporal enhanced ultrasound features for prostate cancer detection [J].
Azizi, Shekoofeh ;
Mousavi, Parvin ;
Yan, Pingkun ;
Tahmasebi, Amir ;
Kwak, Jin Tae ;
Xu, Sheng ;
Turkbey, Baris ;
Choyke, Peter ;
Pinto, Peter ;
Wood, Bradford ;
Abolmaesumi, Purang .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2017, 12 (07) :1111-1121
[10]   Detection of prostate cancer using temporal sequences of ultrasound data: a large clinical feasibility study [J].
Azizi, Shekoofeh ;
Imani, Farhad ;
Ghavidel, Sahar ;
Tahmasebi, Amir ;
Kwak, Jin Tae ;
Xu, Sheng ;
Turkbey, Baris ;
Choyke, Peter ;
Pinto, Peter ;
Wood, Bradford ;
Mousavi, Parvin ;
Abolmaesumi, Purang .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2016, 11 (06) :947-956