Emerging electrical memory technologies based on phase-change materials capitalize on a fast amorphous-to-crystalline transition. Recent evidence from measurements of relaxation oscillations and switching statistics in phase-change memory devices indicates the possibility that electric field induced crystal nucleation plays a dominant role in defining the characteristic electrical switching behavior. Here we present a detailed kinetics study of crystallization in the presence of an electric field for the phase-change material Ge2Sb2Te5. We derive quantitative crystallization maps to show the effects of both temperature and electric field on crystallization and we identify field ranges and parameter values where the electric field effects might play a significant role. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3595408]