THE SIGNED CUMULATIVE DISTRIBUTION TRANSFORM FOR 1-D SIGNAL ANALYSIS AND CLASSIFICATION

被引:5
作者
Aldroubi, Akram [1 ]
Martin, Rocio Diaz [1 ]
Medri, Ivan [1 ]
Rohde, Gustavo K. [2 ]
Thareja, Sumati [1 ]
机构
[1] Vanderbilt Univ, Dept Math, 1326 Stevenson Ctr, Nashville, TN 37240 USA
[2] Univ Virginia, Dept Elect & Comp Engn, Dept Biomed Engn, Charlottesville, VA 22904 USA
来源
FOUNDATIONS OF DATA SCIENCE | 2022年 / 4卷 / 01期
关键词
Cumulative Distribution Transform; data analysis; classification; machine learning; OPTIMAL MASS-TRANSPORT;
D O I
10.3934/fods.2022001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a new mathematical signal transform that is especially suitable for decoding information related to non-rigid signal displacements. We provide a measure theoretic framework to extend the existing Cumulative Distribution Transform [29] to arbitrary (signed) signals on (R) over bar. We present both forward (analysis) and inverse (synthesis) formulas for the transform, and describe several of its properties including translation, scaling, convexity, linear separability and others. Finally, we describe a metric in transform space, and demonstrate the application of the transform in classifying (detecting) signals under random displacements.
引用
收藏
页码:137 / 163
页数:27
相关论文
共 41 条
[1]   Partitioning signal classes using transport transforms for data analysis and machine learning [J].
Aldroubi, Akram ;
Li, Shiying ;
Rohde, Gustavo K. .
SAMPLING THEORY SIGNAL PROCESSING AND DATA ANALYSIS, 2021, 19 (01)
[2]  
Ambrosio L, 2003, LECT NOTES MATH, V1812, P1
[3]  
Arjovsky M, 2017, PR MACH LEARN RES, V70
[4]   Detecting and visualizing cell phenotype differences from microscopy images using transportbased morphometry [J].
Basu, Saurav ;
Kolouri, Soheil ;
Rohde, Gustavo K. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (09) :3448-3453
[5]   Linearized optimal transport for collider events [J].
Cai, Tianji ;
Cheng, Junyi ;
Craig, Nathaniel ;
Craig, Katy .
PHYSICAL REVIEW D, 2020, 102 (11)
[6]   Unbalanced optimal transport: Dynamic and Kantorovich formulations [J].
Chizat, Lenaic ;
Peyre, Gabriel ;
Schmitzer, Bernhard ;
Vialard, Francois-Xavier .
JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (11) :3090-3123
[7]   Optimal Transport for Domain Adaptation [J].
Courty, Nicolas ;
Flamary, Remi ;
Tuia, Devis ;
Rakotomamonjy, Alain .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (09) :1853-1865
[8]   A note on generalized inverses [J].
Embrechts, Paul ;
Hofert, Marius .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2013, 77 (03) :423-432
[9]   APPLICATION OF THE WASSERSTEIN METRIC TO SEISMIC SIGNALS [J].
Engquist, Bjoern ;
Froese, Brittany D. .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2014, 12 (05) :979-988
[10]   OPTIMAL TRANSPORT FOR SEISMIC FULL WAVEFORM INVERSION [J].
Engquist, Bjorn ;
Froese, Brittany D. ;
Yang, Yunan .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2016, 14 (08) :2309-2330