Competition between Levy jumps and continuous drift

被引:12
作者
Sokolov, IM
Belik, VV
机构
[1] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
[2] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119899, Russia
关键词
asymmetric Levy flights; first passage time; splitting probability;
D O I
10.1016/j.physa.2003.08.028
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Motivated by certain birth-death processes with strongly fluctuating birth rates, we consider a level-crossing problem for a random process being a superposition of a continuous drift to the left and jumps to the right. The lengths of the corresponding jumps follow a one-sided extreme Levy-law of index alpha. We concentrate on the case 0 < alpha < 1 and discuss the probability of crossing a left boundary ("extinction"). We show that this probability decays exponentially as a function of the initial distance to the boundary. Such behavior is universal for all alpha < 1 and is exemplified by an exact solution for the special case a The splitting probabilities are also discussed. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:46 / 52
页数:7
相关论文
共 18 条
[1]  
Abramovitz M., 1972, Handbook of Mathematical Functions, V10th
[2]   EPIDEMIOLOGICAL PARAMETERS OF HIV TRANSMISSION [J].
ANDERSON, RM ;
MAY, RM .
NATURE, 1988, 333 (6173) :514-519
[3]   Properties of Levy flights on an interval with absorbing boundaries [J].
Buldyrev, SV ;
Gitterman, M ;
Havlin, S ;
Kazakov, AY ;
da Luz, MGE ;
Raposo, EP ;
Stanley, HE ;
Viswanathan, GM .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 302 (1-4) :148-161
[4]   Average time spent by Levy flights and walks on an interval with absorbing boundaries [J].
Buldyrev, SV ;
Havlin, S ;
Kazakov, AY ;
da Luz, MGE ;
Raposo, EP ;
Stanley, HE ;
Viswanathan, GM .
PHYSICAL REVIEW E, 2001, 64 (04) :11-411081
[5]  
FELLER W., 1971, INTRO PROBABILITY TH, V1
[6]  
IBRAGIMOV IA, 1965, NEZAVISIMYE STATSION
[7]  
JOHNSON AM, 1990, NATURE, V342
[8]   The web of human sexual contacts [J].
Liljeros, F ;
Edling, CR ;
Amaral, LAN ;
Stanley, HE ;
Åberg, Y .
NATURE, 2001, 411 (6840) :907-908
[9]   Anomalous transport in external fields: Continuous time random walks and fractional diffusion equations extended [J].
Metzler, R ;
Klafter, J ;
Sokolov, IM .
PHYSICAL REVIEW E, 1998, 58 (02) :1621-1633
[10]   The random walk's guide to anomalous diffusion: a fractional dynamics approach [J].
Metzler, R ;
Klafter, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01) :1-77