Comprehensive Review of achine Learning (ML) in Image Defogging: Taxonomy of Concepts, Scenes, Feature Extraction, and Classification techniques

被引:20
作者
Arif, Zainab Hussein [1 ,2 ]
Mahmoud, Moamin A. [1 ]
Abdulkareem, Karrar Hameed [3 ]
Mohammed, Mazin Abed [4 ]
Al-Mhiqani, Mohammed Nasser [5 ]
Mutlag, Ammar Awad [6 ]
Damasevicius, Robertas [7 ]
机构
[1] Univ Tenaga Nas, Coll Comp & Informat, Bangi, Selangor, Malaysia
[2] Univ Al Qadisiyah, Coll Comp Sci & Informat Technol, Diwaniyah, Iraq
[3] Al Muthanna Univ, Coll Agr, Samawah 66001, Iraq
[4] Univ Anbar, Coll Comp Sci & Informat Technol, Anbar, Iraq
[5] Univ Teknutal Malaysia Melaka, Informat Secur & Networking Res Grp InFORSNET, Fac Informat & Commun Technol, Melaka, Durian Tunggal, Malaysia
[6] Minist Educ, Pure Sci Dept, Gen Directorate Curricula, Baghdad, Iraq
[7] Silesian Tech Univ, Fac Appl Math, Gliwice, Poland
关键词
CONVOLUTIONAL NEURAL-NETWORKS; QUALITY ASSESSMENT; SELECTION; ENHANCEMENT; AUTOENCODER; STATISTICS; VISION; CNN;
D O I
10.1049/ipr2.12365
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Images captured through a visual sensory system are degraded in a foggy scene, which negatively influences recognition, tracking, and detection of targets. Efficient tools are needed to detect, pre-process, and enhance foggy scenes. Machine learning (ML) has a significant role in image defogging domain for tackling adverse issues. Unfortunately, regardless of contributions that were made by ML, little attention has been attributed to this topic. This paper summarizes the role of ML methods and relevant aspects in the image defogging research area. Also, the basic terms and concepts are highlighted in image defogging topic. Feature extraction approaches with a summary of advantages and disadvantages are described. ML algorithms are also summarized that have been used for applications related to image defogging, that is, image denoising, image quality assessment, image segmentation, and foggy image classification. Open datasets are also discussed. Finally, the existing problems of the image defogging domain in general and, specifically related to ML which need to be further studied are discussed. To the best knowledge, this the first review paper which sheds a light on the role of ML and relevant aspects in the image defogging domain.
引用
收藏
页码:289 / 310
页数:22
相关论文
共 134 条
[1]   Realizing an Effective COVID-19 Diagnosis System Based on Machine Learning and IoT in Smart Hospital Environment [J].
Abdulkareem, Karrar Hameed ;
Mohammed, Mazin Abed ;
Salim, Ahmad ;
Arif, Muhammad ;
Geman, Oana ;
Gupta, Deepak ;
Khanna, Ashish .
IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (21) :15919-15928
[2]   A Novel Multi-Perspective Benchmarking Framework for Selecting Image Dehazing Intelligent Algorithms Based on BWM and Group VIKOR Techniques [J].
Abdulkareem, Karrar Hameed ;
Arbaiy, Nureize ;
Zaidan, A. A. ;
Zaidan, B. B. ;
Albahri, O. S. ;
Alsalem, M. A. ;
Salih, Mahmood M. .
INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING, 2020, 19 (03) :909-957
[3]   A new standardisation and selection framework for real-time image dehazing algorithms from multi-foggy scenes based on fuzzy Delphi and hybrid multi-criteria decision analysis methods [J].
Abdulkareem, Karrar Hameed ;
Arbaiy, Nureize ;
Zaidan, A. A. ;
Zaidan, B. B. ;
Albahri, O. S. ;
Alsalem, M. A. ;
Salih, Mahmood M. .
NEURAL COMPUTING & APPLICATIONS, 2021, 33 (04) :1029-1054
[4]   A Review of Fog Computing and Machine Learning: Concepts, Applications, Challenges, and Open Issues [J].
Abdulkareem, Karrar Hameed ;
Mohammed, Mazin Abed ;
Gunasekaran, Saraswathy Shamini ;
Al-Mhiqani, Mohammed Nasser ;
Mutlag, Ammar Awad ;
Mostafa, Salama A. ;
Ali, Nabeel Salih ;
Ibrahim, Dheyaa Ahmed .
IEEE ACCESS, 2019, 7 :153123-153140
[5]   A framework of human action recognition using length control features fusion and weighted entropy-variances based feature selection [J].
Afza, Farhat ;
Khan, Muhammad Attique ;
Sharif, Muhammad ;
Kadry, Seifedine ;
Manogaran, Gunasekaran ;
Saba, Tanzila ;
Ashraf, Imran ;
Damasevicius, Robertas .
IMAGE AND VISION COMPUTING, 2021, 106
[6]   A Review of Insider Threat Detection: Classification, Machine Learning Techniques, Datasets, Open Challenges, and Recommendations [J].
Al-Mhiqani, Mohammed Nasser ;
Ahmad, Rabiah ;
Zainal Abidin, Z. ;
Yassin, Warusia ;
Hassan, Aslinda ;
Abdulkareem, Karrar Hameed ;
Ali, Nabeel Salih ;
Yunos, Zahri .
APPLIED SCIENCES-BASEL, 2020, 10 (15)
[7]  
Alajarmeh A, 2014, 2014 INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCES (ICCOINS)
[8]   Systematic review of artificial intelligence techniques in the detection and classification of COVID-19 medical images in terms of evaluation and benchmarking: Taxonomy analysis, challenges, future solutions and methodological aspects [J].
Albahri, O. S. ;
Zaidan, A. A. ;
Albahri, A. S. ;
Zaidan, B. B. ;
Abdulkareem, Karrar Hameed ;
Al-qaysi, Z. T. ;
Alamoodi, A. H. ;
Aleesa, A. M. ;
Chyad, M. A. ;
Alesa, R. M. ;
Kem, L. C. ;
Lakulu, Muhammad Modi ;
Ibrahim, A. B. ;
Rashid, Nazre Abdul .
JOURNAL OF INFECTION AND PUBLIC HEALTH, 2020, 13 (10) :1381-1396
[9]   Helping doctors hasten COVID-19 treatment: Towards a rescue framework for the transfusion of best convalescent plasma to the most critical patients based on biological requirements via ml and novel MCDM methods [J].
Albahri, O. S. ;
Al-Obaidi, Jameel R. ;
Zaidan, A. A. ;
Albahri, A. S. ;
Zaidan, B. B. ;
Salih, Mahmood M. ;
Qays, Abdulhadi ;
Dawood, K. A. ;
Mohammed, R. T. ;
Abdulkareem, Karrar Hameed ;
Aleesa, A. M. ;
Alamoodi, A. H. ;
Chyad, M. A. ;
Zulkifli, Che Zalina .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 196
[10]   O-HAZE: a dehazing benchmark with real hazy and haze-free outdoor images [J].
Ancuti, Codruta O. ;
Ancuti, Cosmin ;
Timofte, Radu ;
De Vleeschouwer, Christophe .
PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, :867-875