Generic positivity and foliations in positive characteristic

被引:17
作者
Langer, Adrian [1 ,2 ]
机构
[1] Polish Acad Sci, Inst Math, PL-00656 Warsaw, Poland
[2] Univ Warsaw, Inst Math, PL-02097 Warsaw, Poland
关键词
Tangent bundle; Foliations; Nef line bundle; Positive characteristic; DEFORMATIONS; INEQUALITY; DIMENSION; BUNDLES;
D O I
10.1016/j.aim.2015.02.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove generic semipositivity of the tangent bundle of a non-uniruled Calabi-Yau variety in positive characteristic. We also construct an example of a nef line bundle in characteristic zero, whose each reduction to positive characteristic is not nef. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 37 条
[1]  
[Anonymous], 2013, Cambridge Tracts in Mathematics
[2]  
[Anonymous], 1976, IZV AKAD NAUK SSSR M, DOI DOI 10.1070/IM1976V010N06ABEH001833
[3]  
[Anonymous], PREPRINT
[4]   Frobenius amplitude and strong vanishing theorems for vector bundles [J].
Arapura, D ;
Keeler, DS .
DUKE MATHEMATICAL JOURNAL, 2004, 121 (02) :231-267
[5]  
Bogomolov F., 2001, RATIONAL CURVES FOLI
[6]   ENRIQUES CLASSIFICATION OF SURFACES IN CHAR-P .3. [J].
BOMBIERI, E ;
MUMFORD, D .
INVENTIONES MATHEMATICAE, 1976, 35 :197-232
[7]  
Bosch S., 1990, NERON MODELS ERGEB M, V21
[8]  
Bost JB, 2001, PUBL MATH, P161
[9]  
Bost Jean-Benoit, 2004, GEOMETRIC ASPECTS DW, VI, P371
[10]   Tight closure does not commute with localization [J].
Brenner, Holger ;
Monsky, Paul .
ANNALS OF MATHEMATICS, 2010, 171 (01) :571-588