Existence of lattices in Kac-Moody groups over finite fields

被引:38
作者
Carbone, L
Garland, H
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[2] Yale Univ, Dept Math, New Haven, CT 06520 USA
关键词
Kac-Moody Lie algebra; Kac-Moody group; lattices;
D O I
10.1142/S0219199703001117
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let g be a Kac-Moody Lie algebra. We give an interpretation of Tits' associated group functor using representation theory of g and we construct a locally compact "Kac-Moody group" G over a finite field k. Using (twin) BN-pairs (G, B, N) and (G, B-, N) for G we show that if k is "sufficiently large", then the subgroup B- is a non-uniform lattice in G. We have also constructed an uncountably infinite family of both uniform and non-uniform lattices in rank 2. We conjecture that these form uncountably many distinct conjugacy classes in G. The basic tool for the construction of non-uniform lattices in rank 2 is a spherical Tits system for G which we also construct.
引用
收藏
页码:813 / 867
页数:55
相关论文
共 36 条
[1]  
[Anonymous], 1980, ANNUAIRE COLL FRANCE
[2]   On L-2-cohomology and property (T) for automorphism groups of polyhedral cell complexes [J].
Ballmann, W ;
Swiatkowski, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1997, 7 (04) :615-645
[3]   COVERING THEORY FOR GRAPHS OF GROUPS [J].
BASS, H .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1993, 89 (1-2) :3-47
[4]  
Bass H., 2000, PROGR MATH, V176
[5]  
Bass H, 1990, J. Amer. Math. Soc., V3, P843
[6]  
BOREL A, 1978, J REINE ANGEW MATH, V298, P53
[7]  
Bourbaki N., 2007, GROUPES ALGEBRES LIE, DOI [10.1007/978-3-540-34491-9, DOI 10.1007/978-3-540-34491-9]
[8]  
Carbone L, 1999, MATH RES LETT, V6, P439
[9]  
CARBONE L, 2000, DEFORMATIONS LATTICE
[10]  
CARTWRIGHT D, 1995, MICH MATH J, V45, P511