AFEM FOR THE LAPLACE-BELTRAMI OPERATOR ON GRAPHS: DESIGN AND CONDITIONAL CONTRACTION PROPERTY

被引:17
作者
Mekchay, Khamron [1 ]
Morin, Pedro [2 ]
Nochetto, Ricardo H. [3 ,4 ]
机构
[1] Chulalongkorn Univ, Dept Math, Fac Sci, Bangkok 10330, Thailand
[2] Univ Nacl Litoral, Inst Matemat Aplicada Litoral, CONICET, RA-3450 Guemes, Santa Fe, Argentina
[3] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[4] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
关键词
Laplace-Beltrami operator; graphs; adaptive finite element method; a posteriori error estimate; energy and geometric errors; bisection; contraction; FINITE-ELEMENT METHODS; ELLIPTIC PROBLEMS; CONVERGENCE;
D O I
10.1090/S0025-5718-2010-02435-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an adaptive finite element method (AFEM) of any polynomial degree for the Laplace-Beltrami operator on C-1 graphs Gamma in R-d (d >= 2). We first derive residual-type a posteriori error estimates that account for the interaction of both the energy error in H-1(Gamma) and the surface error in W-infinity(1)(Gamma) due to approximation of P. We devise a marking strategy to reduce the total error estimator, namely a suitably scaled sum of the energy, geometric, and inconsistency error estimators. We prove a conditional contraction property for the sum of the energy error and the total estimator; the conditional statement encodes resolution of Gamma in W-infinity(1) We conclude with one numerical experiment that illustrates the theory.
引用
收藏
页码:625 / 648
页数:24
相关论文
共 21 条
[1]  
Ainsworth M., 2000, PUR AP M-WI
[2]   Surface diffusion of graphs:: Variational formulation, error analysis, and simulation [J].
Bänsch, E ;
Morin, P ;
Nochetto, RH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) :773-799
[3]  
Brenner S.C., 2008, Springer Texts in Applied Mathematics, V15
[4]   Quasi-optimal convergence rate for an adaptive finite element method [J].
Cascon, J. Manuel ;
Kreuzer, Christian ;
Nochetto, Ricardo H. ;
Siebert, Kunibert G. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (05) :2524-2550
[5]  
CASCON JM, QUASIOPTIMAL C UNPUB
[6]  
CHEN Z, 2006, MATH COMPUT, V73, P1167
[7]  
CIARLET P. G., 2002, Classics in Appl. Math., V40
[8]  
CLEMENT P, 1975, REV FR AUTOMAT INFOR, V9, P77
[9]   An adaptive finite element method for the Laplace-Beltrami operator on implicitly defined surfaces [J].
Demlow, Alan ;
Dziuk, Gerhard .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (01) :421-442
[10]   HIGHER-ORDER FINITE ELEMENT METHODS AND POINTWISE ERROR ESTIMATES FOR ELLIPTIC PROBLEMS ON SURFACES [J].
Demlow, Alan .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) :805-827