Physics-Based Device-Circuit Cooptimization Scheme for 7-nm Technology Node SRAM Design and Beyond

被引:26
作者
Huo, Qiang [1 ,2 ]
Wu, Zhenhua [1 ,2 ]
Wang, Xingsheng [3 ]
Huang, Weixing [1 ,2 ]
Yao, Jiaxin [1 ,2 ]
Bu, Jianhui [1 ,2 ]
Zhang, Feng [1 ,2 ]
Li, Ling [1 ,2 ]
Liu, Ming [1 ,2 ]
机构
[1] Chinese Acad Sci, Key Lab Microelect Device & Integrated Technol, Inst Microelect, Beijing 100029, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100029, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
7-nm technology node and beyond; device-circuit cooptimization; FinFET; static random access memory (SRAM); MOBILITY;
D O I
10.1109/TED.2020.2964610
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents a comprehensive assessment on the 6T static random access memory (SRAM) cell with 7-nm FinFET technology by implementing quantum physics-based device-circuit cooptimization. Seven key device design parameters and their multiple impacts on a 6T SRAM cell are systematically evaluated, focusing on materials band engineering, device design, circuit parameters tradeoff, and variation control. The area of SRAM cell under the same Fin quantization scheme remains constant in all evaluations. To the best of our knowledge, the most comprehensive discussion about circuit optimization from multiple device design parameters perspective is presented. Based on our cooptimization scheme, a SRAM cell is effectively designed. For a low-power and robust SRAM cell design, we achieve 56.7% reduction in leakage, 7.9% improvement in hold noise margin (HNM), 8.6% improvement in read noise margin (RNM), and 10.8% improvement in write margin (WM) at the expense of 19.3% increase in delay under design space of gate length (Lg) and spacer thickness (TSPC). For a high-speed SRAM cell design, we recommend focusing on the optimization of architecture and peripheral circuits. This framework not only has the advantages of easy implementation, technology-friendly, and high accuracy, but also suitable for path-finding researches on 5-nm node and beyond.
引用
收藏
页码:907 / 914
页数:8
相关论文
共 20 条
  • [1] Technology and circuit design considerations in quasi-planar double-gate SRAM
    Ananthan, H
    Roy, K
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2006, 53 (02) : 242 - 250
  • [2] [Anonymous], ARXIV190511207
  • [3] [Anonymous], INT EL DEV M
  • [4] [Anonymous], 2017, P IEE VLSI TSA HSINC, DOI DOI 10.1109/VLSI-TSA.2017.7942453
  • [5] Variability Aware Simulation Based Design-Technology Cooptimization (DTCO) Flow in 14 nm FinFET/SRAM Cooptimization
    Asenov, Asen
    Cheng, Binjie
    Wang, Xingsheng
    Brown, Andrew Robert
    Millar, Campbell
    Alexander, Craig
    Amoroso, Salvatore Maria
    Kuang, Jente B.
    Nassif, Sani R.
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (06) : 1682 - 1690
  • [6] Device-Circuit Cosimulation for Energy Efficiency in Sub-10-nm Gate Length Logic and Memory
    Cho, Woo-Suhl
    Roy, Kaushik
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2016, 63 (07) : 2879 - 2886
  • [7] SOI FinFET nFET-to-pFET Tracking Variability Compact Modeling and Impact on Latch Timing
    Deng, Jie
    Rahman, Ardasheir
    Thoma, Rainer
    Schneider, Peter W.
    Johnson, Jim
    Trombley, Henry
    Lu, Ning
    Williams, Richard Q.
    Nayfeh, Hasan M.
    Zhao, Kai
    Robison, Russ
    Guan, Ximeng
    Zamdmer, Noah
    Shuma, Steve
    Worth, Brian
    Sundquist, James E.
    Foreman, Eric A.
    Springer, Scott K.
    Wachnik, Rick
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (06) : 1760 - 1768
  • [8] Optimization of surface orientation for high-performance, low-power and robust FinFET SRAM
    Gangwal, Saakshi
    Mukhopadhyay, Saibal
    Roy, Kaushik
    [J]. PROCEEDINGS OF THE IEEE 2006 CUSTOM INTEGRATED CIRCUITS CONFERENCE, 2006, : 433 - 436
  • [9] Goud AA, 2015, DES AUT TEST EUROPE, P659
  • [10] Gupta MK, 2017, PROC EUR S-STATE DEV, P256, DOI [10.1109/ESSDERC.2017.8066640, 10.1109/essderc.2017.8066640]