Effect of ammonification temperature on the formation of coaxial GaN/Ga2O3 nanowires

被引:10
作者
Kumar, Mukesh [1 ]
Sarau, George [2 ,3 ]
Heilmann, Martin [3 ,4 ]
Christiansen, Silke [2 ,3 ]
Kumar, Vikram [5 ]
Singh, R. [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Phys, New Delhi 110016, India
[2] Helmholtz Ctr Berlin Mat & Energy, Hahn Meitner Pl 1, D-14109 Berlin, Germany
[3] Max Planck Inst Sci Light, Gunther Scharowsky Str 1, D-91058 Erlangen, Germany
[4] Paul Drude Inst Festkorperelekt, Hausvogteipl 5-7, D-10117 Berlin, Germany
[5] Indian Inst Technol Delhi, Ctr Appl Res Elect, New Delhi 110016, India
关键词
coaxial; nanowire; gallium nitride; gallium oxide; GALLIUM NITRIDE; BETA-GA2O3; GAN; SCATTERING; VACANCIES;
D O I
10.1088/1361-6463/50/3/035302
中图分类号
O59 [应用物理学];
学科分类号
摘要
The effect of ammonification temperature on the formation of coaxial GaN/Ga2O3 nanowires from beta-Ga2O3 nanowires is reported in this work. High quality wurtzite GaN material showing a single c-plane phase is achieved from beta-Ga2O3 nanowires having monoclinic crystal structure at a high ammonification temperature of 1050 degrees C. Lower ammonification temperatures such as 900 degrees C are also adequate for achieving coaxial GaN/Ga2O3 nanowire heterostructures, and the degree of GaN phase can be adjusted by varying the ammonification temperature. The crystalline quality of GaN/Ga2O3 nanowires improves with increasing the ammonification temperature. Resonant Raman spectra of GaN/Ga2O3 nanowires show Raman progression through multiple longitudinal-optical-phonon modes with overtones of up to second order. The development and improvement of the emission peak toward the near band edge of GaN at different ammonification temperatures were investigated using cathodoluminescence and photoluminescence characterization.
引用
收藏
页数:9
相关论文
共 25 条
[1]  
Bessolov VN, 2014, REV ADV MATER SCI, V38, P75
[2]   Gallium Nitride Nanowire Based Nanogenerators and Light-Emitting Diodes [J].
Chen, Chih-Yen ;
Zhu, Guang ;
Hu, Youfan ;
Yu, Jeng-Wei ;
Song, Jinghui ;
Cheng, Kai-Yuan ;
Peng, Lung-Han ;
Chou, Li-Jen ;
Wang, Zhong Lin .
ACS NANO, 2012, 6 (06) :5687-5692
[3]   Coaxial Group III-Nitride Nanowire Photovoltaics [J].
Dong, Yajie ;
Tian, Bozhi ;
Kempa, Thomas J. ;
Lieber, Charles M. .
NANO LETTERS, 2009, 9 (05) :2183-2187
[4]   Development of gallium oxide power devices [J].
Higashiwaki, Masataka ;
Sasaki, Kohei ;
Kuramata, Akito ;
Masui, Takekazu ;
Yamakoshi, Shigenobu .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2014, 211 (01) :21-26
[5]   Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates [J].
Higashiwaki, Masataka ;
Sasaki, Kohei ;
Kuramata, Akito ;
Masui, Takekazu ;
Yamakoshi, Shigenobu .
APPLIED PHYSICS LETTERS, 2012, 100 (01)
[6]   Coaxial Metal-Oxide-Semiconductor (MOS) Au/Ga2O3/GaN Nanowires [J].
Hsieh, Chin-Hua ;
Chang, Mu-Tung ;
Chien, Yu-Jen ;
Chou, Li-Jen ;
Chen, Lih-Juann ;
Chen, Chii-Dong .
NANO LETTERS, 2008, 8 (10) :3288-3292
[7]   Nanowire Heterostructures [J].
Hyun, Jerome K. ;
Zhang, Shixiong ;
Lauhon, Lincoln J. .
ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 43, 2013, 43 :451-479
[8]   A new approach to free-standing GaN using β-Ga2O3 as a substrate [J].
Kachel, Krzysztof ;
Korytov, Maxim ;
Gogova, Daniela ;
Galazka, Zbigniew ;
Albrecht, Martin ;
Zwierz, Radoslaw ;
Siche, Dietmar ;
Golka, Sebastian ;
Kwasniewski, Albert ;
Schmidbauer, Martin ;
Fornari, Roberto .
CRYSTENGCOMM, 2012, 14 (24) :8536-8540
[9]   Multiphonon resonant Raman scattering in non-polar GaN epilayers [J].
Kumar, Mukesh ;
Becker, M. ;
Wernicke, T. ;
Singh, R. .
APPLIED PHYSICS LETTERS, 2014, 105 (14)
[10]   Nanofunctional gallium oxide (Ga2O3) nanowires/nanostructures and their applications in nanodevices [J].
Kumar, Sudheer ;
Singh, R. .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2013, 7 (10) :781-792