A central limit theorem for solutions of the porous medium equation

被引:15
作者
Toscani, G [1 ]
机构
[1] Univ Pavia, Dept Math, I-27100 Pavia, Italy
关键词
nonlinear parabolic equations; porous medium equation; long-time behavior of solutions; central limit problem;
D O I
10.1007/s00028-005-0183-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the large-time behavior of the second moment (energy) E(t) = 1/2 integral vertical bar x vertical bar(2)upsilon(x, t)dx for the flow of a gas in a N-dimensional porous medium with initial density upsilon(0)(x) >= 0. The 2 density upsilon(x, t) satisfies the nonlinear degenerate parabolic equation upsilon(t) = Delta upsilon(m) where m > 1 is a physical constant. Assuming that integral(upsilon(0)(m) (x) + vertical bar x vertical bar(2+delta) upsilon(0)(x))dx < infinity for some delta > 0, we prove that E(t) behaves asymptotically, as t -> infinity, like the energy E-B(t) of the Barenblatt-Pattle solution B(vertical bar x vertical bar, t). This is shown by proving that E(t)/E-B(t) converges to 1 at the (optimal) rate t(-2/(N(m-)+2)). A simple corollary of this result is a central limit theorem for the scaled solution E(t)(N/2)upsilon(E (t)(1/2)x, t).
引用
收藏
页码:185 / 203
页数:19
相关论文
共 28 条
[1]  
ANSORGE R, 2002, MODELLING THEORY BAS
[2]   On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations [J].
Arnold, A ;
Markowich, P ;
Toscani, G ;
Unterreiter, A .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (1-2) :43-100
[3]   Intermediate asymptotics in L1 for general nonlinear diffusion equations [J].
Biler, P ;
Dolbeault, J ;
Esteban, MJ .
APPLIED MATHEMATICS LETTERS, 2002, 15 (01) :101-107
[4]  
CARRILLO J, 2004, INTERMEDIATE ASYMPTO
[5]  
Carrillo JA, 1998, MATH METHOD APPL SCI, V21, P1269, DOI 10.1002/(SICI)1099-1476(19980910)21:13<1269::AID-MMA995>3.0.CO
[6]  
2-O
[7]  
Carrillo JA, 2000, INDIANA U MATH J, V49, P113
[8]   Fine asymptotics for fast diffusion equations [J].
Carrillo, JA ;
Vázquez, JL .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (5-6) :1023-1056
[9]   Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities [J].
Carrillo, JA ;
Jüngel, A ;
Markowich, PA ;
Toscani, G ;
Unterreiter, A .
MONATSHEFTE FUR MATHEMATIK, 2001, 133 (01) :1-82
[10]  
Csiszar I., 1967, STUD SCI MATH HUNG, V2, P299