Thermal conductivity study of ZrO2-YO1.5-NbO2.5 TBC

被引:16
作者
Takahashi, R. J. [1 ]
Assis, J. M. K. [2 ]
Neto, F. Piorino [3 ]
Reis, D. A. P. [1 ]
机构
[1] Univ Fed Sao Paulo, Sci & Technol Inst, Sao Jose Dos Campos, SP, Brazil
[2] Inst Aeronaut & Space, Sao Jose Dos Campos, SP, Brazil
[3] Natl Inst Space Res, Sao Jose Dos Campos, SP, Brazil
来源
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T | 2022年 / 19卷
关键词
TBC; ZrO2-YO1.5-NbO2.5; Thermal conductivity; Laser; ZIRCONIA; COATINGS; YTTRIA; CREEP; CERAMICS; BEHAVIOR;
D O I
10.1016/j.jmrt.2022.07.037
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The reduction of thermal conductivity provided by the zirconia ceramic for TBC application improves protection of turbine blades during the thermal cycles and the high temperature operations. The TBC is a complex system composed of different layers: a metal substrate, a metallic bond coat, thermally grown oxide (TGO), and ceramic top coat. The present study determined thermal conductivity properties by theoretical calculation of the thermal diffusivity, measured by laser flash technique, at 800 degrees C and 1250 degrees C for ZrO2-YO1.5-NbO2.5 (TC) with 14.5, 16.0, and 17.5 mol% equimolar yttria and niobia in zirconia, by CO2 laser on the substrate of titanium. Although microscopy and EDS showed that specific parameters of the laser parameters must be defined to lager thickness of the TBC layers, zirconia co-doped with yttria and niobia promoted a significant reduction of the thermal conductiv-ity by approximately 52 % when compared to zirconia with 7.6 % molar with yttria, currently used in gas turbine engine industry. That TC composition with laser processing could be explored as a candidate thermal insulation material for TBC application. (C) 2022 The Authors. Published by Elsevier B.V.
引用
收藏
页码:4932 / 4938
页数:7
相关论文
共 34 条
  • [1] Thermal conductivity investigation of zirconia co-doped with yttria and niobia EB-PVD TBCs
    Almeida, D. S.
    Silva, C. R. M.
    Nono, M. C. A.
    Cairo, C. A. A.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2007, 443 (1-2): : 60 - 65
  • [2] Surface modification of aluminum alloys with carbon nanotubes by laser surface melting
    Ardila-Rodriguez, L. A.
    Menezes, B. R. C.
    Pereira, L. A.
    Takahashi, R. J.
    Oliveira, A. C.
    Travessa, D. N.
    [J]. SURFACE & COATINGS TECHNOLOGY, 2019, 377
  • [3] Assis JMK, 2014, ESTUDO ESTABILIZACA
  • [4] Briguente FP, 2014, MAT SCI FORUM, V802, P472
  • [5] Supersonic Plasma Spray Deposition of CoNiCrAlY Coatings on Ti-6Al-4V Alloy
    Caliari, F. R.
    Miranda, F. S.
    Reis, D. A. P.
    Essiptchouk, A. M.
    Filho, G. P.
    [J]. JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2017, 26 (05) : 880 - 889
  • [6] Thermal barrier coating materials
    Clarke, David R.
    Phillpot, Simon R.
    [J]. MATERIALS TODAY, 2005, 8 (06) : 22 - 29
  • [7] Materials design for the next generation thermal barrier coatings
    Clarke, DR
    Levi, CG
    [J]. ANNUAL REVIEW OF MATERIALS RESEARCH, 2003, 33 : 383 - 417
  • [8] CTMSP-LABMAT, 2017, CERT AN SERV, P071
  • [9] Investigation on the microstructure and creep behavior of laser remelted thermal barrier coating
    de Freitas, Filipe Estevao
    Briguente, Flavio Perpetuo
    dos Reis, Adriano Goncalves
    de Vasconcelos, Getulio
    Pereira Reis, Danieli Aparecida
    [J]. SURFACE & COATINGS TECHNOLOGY, 2019, 369 : 257 - 264
  • [10] NEW THERMAL-DIFFUSIVITY IDENTIFICATION APPLIED TO FLASH METHOD
    DEGIOVANNI, A
    LAURENT, M
    [J]. REVUE DE PHYSIQUE APPLIQUEE, 1986, 21 (03): : 229 - 237