Global perspective on application of controlled low-strength material (CLSM) for trench backfilling - An overview

被引:91
作者
Ling, Tung-Chai [1 ,2 ,3 ]
Kaliyavaradhan, Senthil Kumar [1 ]
Poon, Chi Sun [2 ]
机构
[1] Hunan Univ, Coll Civil Engn, Changsha 410082, Hunan, Peoples R China
[2] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Kowloon, Hong Kong, Peoples R China
[3] Key Lab Green & Adv Civil Engn Mat & Applicat Tec, Changsha, Hunan, Peoples R China
关键词
Controlled low-strength material (CLSM); Trench backfilling; Waste materials; Specification; Flowability; Excavatability; INCINERATION BOTTOM ASH; INDUSTRIAL BY-PRODUCTS; FLY-ASH; ENGINEERING PROPERTIES; COMPRESSIVE STRENGTH; LIGHTWEIGHT AGGREGATE; METALLIC MATERIALS; BENEFICIAL REUSE; FLOWABLE SLURRY; PASTE BACKFILL;
D O I
10.1016/j.conbuildmat.2017.10.050
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Controlled low-strength material (CLSM) is known as a self-leveling and self-compacting cementitious backfill material used for backfilling. The aim of this paper is to give an overview of the research development and practical application of CLSM for trench backfilling. Widespread application of CLSM is found around the world including in the United States of America (USA) as well as in other developed and developing countries. The main specifications and guidelines used in the USA and referenced by most of the other countries are highlighted in this paper. In addition, long-term site performance and technical limitations to be considered before application of CLSM are also discussed. Based on 115 globally sourced literature articles, it is suggested that the materials used for the production of CLSM are varied from country to country which in turn could have a significant influence on the resulting properties and its application in the field. It is also demonstrated that use of high volume by-products or/and waste materials is an effective way to control the low strength requirement of CLSM and minimize the environmental concerns related to the disposal of these waste materials. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:535 / 548
页数:14
相关论文
共 50 条
[41]   Properties of controlled low-strength materials made with wood fly ash [J].
Naik, TR ;
Kraus, RN ;
Siddique, R ;
Chun, YM .
INNOVATIONS IN CONTROLLED LOW-STRENGTH MATERIAL (FLOWABLE FILL), 2004, 1459 :31-40
[42]   Characterization of controlled low-strength materials from waste expansive soils [J].
Du, Jianbiao ;
Zhang, Liang ;
Hu, Qiuhui ;
Luo, Qiang ;
Connolly, David P. ;
Liu, Kaiwen ;
Hu, Tianfei ;
Zhu, Junfeng ;
Wang, Tengfei .
CONSTRUCTION AND BUILDING MATERIALS, 2024, 411
[43]   Controlled Low-Strength Materials (CLSM) as backfill: experimental investigation or CLSM properties and numerical evaluation of stresses and strains using PLAXIS 2D [J].
Dev, Lini K. ;
Kumar, Akhilesh ;
Singh, Chandan Kumar .
GEOMECHANICS AND GEOENGINEERING-AN INTERNATIONAL JOURNAL, 2023, 18 (06) :577-592
[44]   Normal and Controlled Low-Strength Material Concrete with Volume of Ash and Glass Waste [J].
Agarwal, Mohit ;
Castillo, Enrique del Rey .
ACI MATERIALS JOURNAL, 2022, 119 (04) :75-88
[45]   Recycling of arsenic-rich mine tailings in controlled low-strength materials [J].
Kim, Bong-Ju ;
Jang, Jeong-Gook ;
Park, Cheon-Young ;
Han, Oh-Hyung ;
Kim, Hyeong-Ki .
JOURNAL OF CLEANER PRODUCTION, 2016, 118 :151-161
[46]   Engineering properties of controlled low-strength materials containing waste oyster shells [J].
Kuo, Wen-Ten ;
Wang, Her-Yung ;
Shu, Chun-Ya ;
Su, De-Sin .
CONSTRUCTION AND BUILDING MATERIALS, 2013, 46 :128-133
[47]   Engineering properties of controlled low-strength material made with residual soil and Class F fly ash [J].
Sheen, Yeong-Nain ;
Huang, Li-Jeng ;
Le, Duc-Hien .
Advance Materials Development and Applied Mechanics, 2014, 597 :345-348
[48]   Development of High-Performance Fly-Ash-Based Controlled Low-Strength Materials for Backfilling in Metropolitan Cities [J].
Han, Jingyu ;
Jo, Youngseok ;
Kim, Yunhee ;
Kim, Bumjoo .
APPLIED SCIENCES-BASEL, 2023, 13 (16)
[49]   Utilization of excavated soil in coal ash-based controlled low strength material (CLSM) [J].
Kim, Young-sang ;
Tan Manh Do ;
Kim, Hyeong-ki ;
Kang, Gyeongo .
CONSTRUCTION AND BUILDING MATERIALS, 2016, 124 :598-605
[50]   Standard test method for preparation and testing of controlled low strength material (CLSM) test cylinders [J].
INNOVATIONS IN CONTROLLED LOW-STRENGTH MATERIAL (FLOWABLE FILL), 2004, 1459 :143-147