Infinite measure preserving transformations with Radon MSJ

被引:1
|
作者
Danilenko, Alexandre I. [1 ]
机构
[1] Natl Acad Sci Ukraine, Inst Low Temp Phys & Engn, 47 Nauky Ave, UA-61164 Kharkov, Ukraine
关键词
MINIMAL SELF-JOININGS; NONSINGULAR TRANSFORMATIONS; ERGODIC ACTIONS;
D O I
10.1007/s11856-018-1746-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce concepts of Radon MSJ and Radon disjointness for infinite Radon measure preserving homeomorphisms of the locally compact Cantor space. We construct an uncountable family of pairwise Radon disjoint infinite Chacon like transformations. Every such transformation is Radon strictly ergodic, totally ergodic, asymmetric (not isomorphic to its inverse), has Radon MSJ and possesses Radon joinings whose ergodic components are not joinings.
引用
收藏
页码:21 / 51
页数:31
相关论文
共 10 条
  • [1] Genericity of rigid and multiply recurrent infinite measure-preserving and nonsingular transformations
    Ageev, ON
    Silva, CE
    TOPOLOGY PROCEEDINGS, VOL 26, NO 2, 2001-2002, 2002, 26 (02): : 357 - 365
  • [2] Weakly mixing and rigid rank-one transformations preserving an infinite measure
    Bayless, Rachel L.
    Yancey, Kelly B.
    NEW YORK JOURNAL OF MATHEMATICS, 2015, 21 : 615 - 636
  • [3] ON MEASURE-PRESERVING TRANSFORMATIONS AND DOUBLY STATIONARY SYMMETRICAL STABLE PROCESSES
    GROSS, A
    WERON, A
    STUDIA MATHEMATICA, 1995, 114 (03) : 275 - 287
  • [4] Strict doubly ergodic infinite transformations
    Loh, Isaac
    Silva, Cesar E.
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2017, 32 (04): : 519 - 543
  • [5] Infinite symmetric ergodic index and related examples in infinite measure
    Loh, Isaac
    Silva, Cesar E.
    Athiwaratkun, Ben
    STUDIA MATHEMATICA, 2018, 243 (01) : 101 - 115
  • [6] ERGODICITY AND CONSERVATIVITY OF PRODUCTS OF INFINITE TRANSFORMATIONS AND THEIR INVERSES
    Clancy, Julien
    Friedberg, Rina
    Kasmalkar, Indraneel
    Loh, Isaac
    Padurariu, Tudor
    Silva, Cesar E.
    Vasudevan, Sahana
    COLLOQUIUM MATHEMATICUM, 2016, 143 (02) : 271 - 291
  • [7] Relatively finite measure-preserving extensions and lifting multipliers by Rokhlin cocycles
    Austin, T.
    Lemanczyk, M.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2009, 6 (01) : 115 - 131
  • [8] A topological lens for a measure-preserving system
    Glasner, E.
    Lemanczyk, M.
    Weiss, B.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2011, 31 : 49 - 75
  • [9] On Mixing-Like Notions in Infinite Measure
    Silva, Cesar E.
    AMERICAN MATHEMATICAL MONTHLY, 2017, 124 (09): : 807 - 825
  • [10] Universally measure-preserving homeomorphisms of cantor minimal systems
    Hamachi, Toshihiro
    Keane, Michael S.
    Yuasa, Hisatoshi
    JOURNAL D ANALYSE MATHEMATIQUE, 2011, 113 : 1 - 51