Decoherence in the quantum Ising model with transverse dissipative interaction in the strong-coupling regime

被引:9
作者
Weisbrich, H. [1 ]
Saussol, C. [1 ]
Belzig, W. [1 ]
Rastelli, G. [1 ,2 ]
机构
[1] Univ Konstanz, Fachbereich Phys, D-78457 Constance, Germany
[2] Univ Konstanz, Zukunftskolleg, D-78457 Constance, Germany
关键词
STATISTICAL-MECHANICS; PHASE-TRANSITION; TEMPERATURE; DYNAMICS; CHAIN;
D O I
10.1103/PhysRevA.98.052109
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the decoherence dynamics of a quantum Ising lattice of finite size with a transverse dissipative interaction, namely, the coupling with the bath is assumed perpendicular to the direction of the spins interaction and parallel to the external magnetic field. In the limit of small transverse field, the eigenstates and spectrum are obtained by a strong-coupling expansion, from which we derive the Lindblad equation in the Markovian limit. At temperature lower than the energy gap and for weak dissipation, the decoherence dynamics can be restricted to take only the two degenerate ground states and the first excited subspace into account. The latter is formed by pairs of topological excitations (domain walls or kinks), which are quantum delocalized along the chain due to the small magnetic field. We find that some of these excited states form a relaxation-free subspace, namely, they do not decay to the ground states.
引用
收藏
页数:9
相关论文
共 41 条
[1]  
[Anonymous], 2012, QUANTUM DISSIPATIVE
[2]   Digitized adiabatic quantum computing with a superconducting circuit [J].
Barends, R. ;
Shabani, A. ;
Lamata, L. ;
Kelly, J. ;
Mezzacapo, A. ;
Heras, U. Las ;
Babbush, R. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Yu ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Jeffrey, E. ;
Lucero, E. ;
Megrant, A. ;
Mutus, J. Y. ;
Neeley, M. ;
Neill, C. ;
O'Malley, P. J. J. ;
Quintana, C. ;
Roushan, P. ;
Sank, D. ;
Vainsencher, A. ;
Wenner, J. ;
White, T. C. ;
Solano, E. ;
Neven, H. ;
Martinis, John M. .
NATURE, 2016, 534 (7606) :222-226
[3]   STATISTICAL MECHANICS OF XY-MODEL .2. SPIN-CORRELATION FUNCTIONS [J].
BAROUCH, E ;
MCCOY, BM .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1971, 3 (02) :786-+
[4]  
Breuer H.-P., 2007, The Theory of Open Quantum Systems
[5]   Algebraic versus Exponential Decoherence in Dissipative Many-Particle Systems [J].
Cai, Zi ;
Barthel, Thomas .
PHYSICAL REVIEW LETTERS, 2013, 111 (15)
[6]   Quantum Quench in the Transverse-Field Ising Chain [J].
Calabrese, Pasquale ;
Essler, Fabian H. L. ;
Fagotti, Maurizio .
PHYSICAL REVIEW LETTERS, 2011, 106 (22)
[7]   Time Evolution of Local Observables After Quenching to an Integrable Model [J].
Caux, Jean-Sebastien ;
Essler, Fabian H. L. .
PHYSICAL REVIEW LETTERS, 2013, 110 (25)
[8]   Generation and protection of a maximally entangled state between many modes in an optical network with dissipation [J].
Coto, Raul ;
Orszag, Miguel ;
Eremeev, Vitalie .
PHYSICAL REVIEW A, 2016, 93 (06)
[9]   Zero-temperature phase diagram of dissipative random Ising ferromagnetic chains [J].
Cugliandolo, L. F. ;
Lozano, G. S. ;
Lozza, H. F. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (30-31) :5219-5223
[10]   Reducing decoherence in quantum-computer memory with all quantum bits coupling to the same environment [J].
Duan, LM ;
Guo, GC .
PHYSICAL REVIEW A, 1998, 57 (02) :737-741