Role of electrolyte in stabilizing hard carbon as an anode for rechargeable sodium-ion batteries with long cycle life

被引:112
作者
Hirsh, Hayley S. [1 ]
Sayahpour, Baharak [2 ]
Shen, Ashley [1 ]
Li, Weikang [1 ]
Lu, Bingyu [2 ]
Zhao, Enyue [1 ]
Zhang, Minghao [1 ]
Meng, Ying Shirley [1 ,2 ]
机构
[1] Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92121 USA
[2] Univ Calif San Diego, Mat Sci & Engn Program, La Jolla, CA 92121 USA
基金
美国国家科学基金会;
关键词
Sodium-ion batteries; Hard carbon anode; Electrode electrolyte interface; Grid-storage; HIGH-PERFORMANCE ANODE; LITHIUM-ION; STORAGE PERFORMANCE; ENERGY-STORAGE; DENSITY SODIUM; MICROSIZED SN; INTERCALATION; INTERPHASE; GRAPHITE; INSERTION;
D O I
10.1016/j.ensm.2021.07.021
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hard carbon (HC) is an attractive anode material for grid-level sodium-ion batteries (NIBs) due to the widespread availability of carbon, its high specific capacity, and low electrochemical working potential. However, the issues of low first cycle Coulombic efficiency and poor rate performance of HC need to be addressed for it to become a practical long-life solution for NIBs. These drawbacks appear to be electrolyte dependent, since ether-based electrolytes can largely improve the performance compared with carbonate electrolytes. An explanation for the mechanism behind these performance differences is critical for the rational design of highly reversible sodium storage. Combining gas chromatography, Raman spectroscopy, cryogenic transmission electron microscopy, and X-ray photoelectron spectroscopy, this work demonstrates that the solid electrolyte interphase (SEI) is the key difference between ether- and carbonated-based electrolyte, which determines the charge transfer kinetics and the extent of parasitic reactions. Although both electrolytes show no residual sodium stored in the HC bulk structure, the uniform and conformal SEI formed by the ether-based electrolyte enables improved cycle efficiency and rate performance. These findings highlight a pathway to achieve long-life grid-level NIBs using HC anodes through interfacial engineering.
引用
收藏
页码:78 / 87
页数:10
相关论文
共 52 条
[1]   Long cycle life and high rate sodium-ion chemistry for hard carbon anodes [J].
Bai, Panxing ;
He, Yongwu ;
Xiong, Peixun ;
Zhao, Xinxin ;
Xu, Kang ;
Xu, Yunhua .
ENERGY STORAGE MATERIALS, 2018, 13 :274-282
[2]   Hard Carbon Originated from Polyvinyl Chloride Nanofibers As High-Performance Anode Material for Na-Ion Battery [J].
Bai, Ying ;
Wang, Zhen ;
Wu, Chuan ;
Xu, Rui ;
Wu, Feng ;
Liu, Yuanchang ;
Li, Hui ;
Li, Yu ;
Lu, Jun ;
Amine, Khalil .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (09) :5598-5604
[3]   Solid Electrolyte Interphases on Sodium Metal Anodes [J].
Bao, Changyuan ;
Wang, Bo ;
Liu, Peng ;
Wu, Hao ;
Zhou, Yu ;
Wang, Dianlong ;
Liu, Huakun ;
Dou, Shixue .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (52)
[4]   Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements [J].
Bommier, Clement ;
Luo, Wei ;
Gao, Wen-Yang ;
Greaney, Alex ;
Ma, Shengqian ;
Ji, Xiulei .
CARBON, 2014, 76 :165-174
[5]   Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications [J].
Cao, Yuliang ;
Xiao, Lifen ;
Sushko, Maria L. ;
Wang, Wei ;
Schwenzer, Birgit ;
Xiao, Jie ;
Nie, Zimin ;
Saraf, Laxmikant V. ;
Yang, Zhengguo ;
Liu, Jun .
NANO LETTERS, 2012, 12 (07) :3783-3787
[6]   ZONE-CENTER PHONON FREQUENCIES FOR GRAPHITE AND GRAPHITE-INTERCALATION COMPOUNDS - CHARGE-TRANSFER AND INTERCALATE-COUPLING EFFECTS [J].
CHAN, CT ;
HO, KM ;
KAMITAKAHARA, WA .
PHYSICAL REVIEW B, 1987, 36 (06) :3499-3502
[7]   Combined economic and technological evaluation of battery energy storage for grid applications [J].
Davies, D. M. ;
Verde, M. G. ;
Mnyshenko, O. ;
Chen, Y. R. ;
Rajeev, R. ;
Meng, Y. S. ;
Elliott, G. .
NATURE ENERGY, 2019, 4 (01) :42-50
[8]   Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry [J].
Dou, Xinwei ;
Hasa, Ivana ;
Saurel, Damien ;
Vaalma, Christoph ;
Wu, Liming ;
Buchholz, Daniel ;
Bresser, Dominic ;
Komaba, Shinichi ;
Passerini, Stefano .
MATERIALS TODAY, 2019, 23 :87-104
[9]   A comprehensive study on the electrolyte, anode and cathode for developing commercial type non-flammable sodium-ion battery [J].
Du, Kang ;
Wang, Chen ;
Subasinghe, Lihil Uthpala ;
Gajella, Satyanarayana Reddy ;
Law, Markas ;
Rudola, Ashish ;
Balaya, Palani .
ENERGY STORAGE MATERIALS, 2020, 29 :287-299
[10]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935