Double-period breathers in a driven and damped lattice

被引:1
作者
Bel, G. [1 ,2 ,3 ]
Alexandrov, B. S. [4 ]
Bishop, A. R. [4 ]
Rasmussen, K. O. [4 ]
机构
[1] Ben Gurion Univ Negev, Blaustein Inst Desert Res, Dept Solar Energy & Environm Phys, Sede Boger Campus, IL-84990 Sede Boqer, Israel
[2] Ben Gurion Univ Negev, Dept Phys, Sede Boger Campus, IL-84990 Sede Boqer, Israel
[3] Los Alamos Natl Lab, Ctr Nonlinear Studies CNLS, Los Alamos, NM 87545 USA
[4] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
关键词
STOCHASTIC RESONANCE; NOISE;
D O I
10.1103/PhysRevE.98.062205
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Spatially localized and temporally oscillating solutions, known as discrete breathers, have been experimentally and theoretically discovered in many physical systems. Here, we consider a lattice of coupled damped and driven Helmholtz-Duffing oscillators in which we found a spatial coexistence of oscillating solutions with different frequencies. Specifically, we demonstrate that stable period-doubled solutions coexist with solutions oscillating at the frequency of the driving force. Such solutions represent period-doubled breathers resulting from a stability overlap between subharmonic and harmonic solutions and exist up to a certain strength of the lattice coupling. Our findings suggest that this phenomenon can occur in any driven lattice where the nonlinearity admits bistability (or multi-stability) of subharmonic and harmonic solutions.
引用
收藏
页数:5
相关论文
共 28 条
[11]   q Breathers in Finite Lattices: Nonlinearity and Weak Disorder [J].
Ivanchenko, M. V. .
PHYSICAL REVIEW LETTERS, 2009, 102 (17)
[12]  
Kalmar-Nagy T., 2011, DUFFING EQUATION NON, P139
[13]   Bifurcation structure of two coupled periodically driven double-well Duffing oscillators [J].
Kenfack, A .
CHAOS SOLITONS & FRACTALS, 2003, 15 (02) :205-218
[14]   Gain-Driven Discrete Breathers in PT-Symmetric Nonlinear Metamaterials [J].
Lazarides, N. ;
Tsironis, G. P. .
PHYSICAL REVIEW LETTERS, 2013, 110 (05)
[15]   Mechanism of discrete breather excitation in driven micro-mechanical cantilever arrays [J].
Maniadis, P ;
Flach, S .
EUROPHYSICS LETTERS, 2006, 74 (03) :452-458
[16]   Feigenbaum cascade of discrete breathers in a model of DNA [J].
Maniadis, P. ;
Alexandrov, B. S. ;
Bishop, A. R. ;
Rasmussen, K. O. .
PHYSICAL REVIEW E, 2011, 83 (01)
[17]   Chaos and routes to chaos in coupled Duffing oscillators with multiple degrees of freedom [J].
Musielak, DE ;
Musielak, ZE ;
Benner, JW .
CHAOS SOLITONS & FRACTALS, 2005, 24 (04) :907-922
[18]   Multifrequency and edge breathers in the discrete sine-Gordon system via subharmonic driving: Theory, computation and experiment [J].
Palmero, F. ;
Han, J. ;
English, L. Q. ;
Alexander, T. J. ;
Kevrekidis, P. G. .
PHYSICS LETTERS A, 2016, 380 (03) :402-407
[19]   SUPERSTRUCTURE IN THE BIFURCATION SET OF THE DUFFING EQUATION X+DX+X+X3=FCOS(W)T) [J].
PARLITZ, U ;
LAUTERBORN, W .
PHYSICS LETTERS A, 1985, 107 (08) :351-355
[20]   Effects of noise on the frequency response of the monostable Duffing oscillator [J].
Perkins, Edmon .
PHYSICS LETTERS A, 2017, 381 (11) :1009-1013