Double-period breathers in a driven and damped lattice

被引:1
作者
Bel, G. [1 ,2 ,3 ]
Alexandrov, B. S. [4 ]
Bishop, A. R. [4 ]
Rasmussen, K. O. [4 ]
机构
[1] Ben Gurion Univ Negev, Blaustein Inst Desert Res, Dept Solar Energy & Environm Phys, Sede Boger Campus, IL-84990 Sede Boqer, Israel
[2] Ben Gurion Univ Negev, Dept Phys, Sede Boger Campus, IL-84990 Sede Boqer, Israel
[3] Los Alamos Natl Lab, Ctr Nonlinear Studies CNLS, Los Alamos, NM 87545 USA
[4] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
关键词
STOCHASTIC RESONANCE; NOISE;
D O I
10.1103/PhysRevE.98.062205
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Spatially localized and temporally oscillating solutions, known as discrete breathers, have been experimentally and theoretically discovered in many physical systems. Here, we consider a lattice of coupled damped and driven Helmholtz-Duffing oscillators in which we found a spatial coexistence of oscillating solutions with different frequencies. Specifically, we demonstrate that stable period-doubled solutions coexist with solutions oscillating at the frequency of the driving force. Such solutions represent period-doubled breathers resulting from a stability overlap between subharmonic and harmonic solutions and exist up to a certain strength of the lattice coupling. Our findings suggest that this phenomenon can occur in any driven lattice where the nonlinearity admits bistability (or multi-stability) of subharmonic and harmonic solutions.
引用
收藏
页数:5
相关论文
共 28 条
[1]   DNA breathing dynamics in the presence of a terahertz field [J].
Alexandrov, B. S. ;
Gelev, V. ;
Bishop, A. R. ;
Usheva, A. ;
Rasmussen, K. O. .
PHYSICS LETTERS A, 2010, 374 (10) :1214-1217
[2]  
BENZI R, 1982, TELLUS, V34, P10, DOI 10.1111/j.2153-3490.1982.tb01787.x
[3]   Discrete Breathers in One-Dimensional Diatomic Granular Crystals [J].
Boechler, N. ;
Theocharis, G. ;
Job, S. ;
Kevrekidis, P. G. ;
Porter, Mason A. ;
Daraio, C. .
PHYSICAL REVIEW LETTERS, 2010, 104 (24)
[4]   Piezoelectric buckled beams for random vibration energy harvesting [J].
Cottone, F. ;
Gammaitoni, L. ;
Vocca, H. ;
Ferrari, M. ;
Ferrari, V. .
SMART MATERIALS AND STRUCTURES, 2012, 21 (03)
[5]  
Doedel EJ., 1981, C NUMER, V30, P265
[6]   Generation of Localized Modes in an Electrical Lattice Using Subharmonic Driving [J].
English, L. Q. ;
Palmero, F. ;
Candiani, P. ;
Cuevas, J. ;
Carretero-Gonzalez, R. ;
Kevrekidis, P. G. ;
Sievers, A. J. .
PHYSICAL REVIEW LETTERS, 2012, 108 (08)
[7]   Discrete breathers [J].
Flach, S ;
Willis, CR .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 295 (05) :181-264
[8]   NONLINEAR NEURAL NETWORKS - PRINCIPLES, MECHANISMS, AND ARCHITECTURES [J].
GROSSBERG, S .
NEURAL NETWORKS, 1988, 1 (01) :17-61
[9]  
Hänggi P, 2002, CHEMPHYSCHEM, V3, P285, DOI 10.1002/1439-7641(20020315)3:3<285::AID-CPHC285>3.0.CO
[10]  
2-A