Challenges in process integration of catalytic DC plasma synthesis of vertically aligned carbon nanofibres

被引:6
作者
Melechko, Anatoli V. [1 ]
Pearce, Ryan C. [1 ]
Hensley, Dale K. [2 ]
Simpson, Michael L. [2 ]
McKnight, Timothy E. [3 ]
机构
[1] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA
[2] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[3] Oak Ridge Natl Lab, Measurement Sci & Syst Engn Div, Oak Ridge, TN 37831 USA
关键词
CHEMICAL-VAPOR-DEPOSITION; FIELD-EMISSION PROPERTIES; LOW-TEMPERATURE GROWTH; LARGE-SCALE SYNTHESIS; COVALENT FUNCTIONALIZATION; NANOELECTRODE ARRAYS; HIPPOCAMPAL SLICES; PATTERNED GROWTH; NANOTUBE GROWTH; FABRICATION;
D O I
10.1088/0022-3727/44/17/174008
中图分类号
O59 [应用物理学];
学科分类号
摘要
The ability to synthesize free-standing, individual carbon nanofibres (CNFs) aligned perpendicularly to a substrate has enabled fabrication of a large array of devices with nanoscale functional elements, including electron field emission sources, electrochemical probes, neural interface arrays, scanning probes, gene delivery arrays and many others. This was made possible by development of a catalytic plasma process, with DC bias directing the alignment of nanofibres. Successful implementation of prototypical devices has uncovered numerous challenges in the integration of this synthesis process as one of the steps in device fabrication. This paper is dedicated to these engineering and fundamental difficulties that hinder further device development. Relatively high temperature for catalytic synthesis, electrical conductivity of the substrate to maintain DC discharge and other difficulties place restrictions on substrate material. Balancing non-catalytic carbon film deposition and substrate etching, non-uniformity of plasma due to growth of the high aspect ratio structures, plasma instabilities and other factors lead to challenges in controlling the plasma. Ultimately, controlling the atomistic processes at the catalyst nanoparticle (NP) and the behaviour of the NP is the central challenge of plasma nanosynthesis of vertically aligned CNFs.
引用
收藏
页数:11
相关论文
共 89 条
[1]   Wafer-scale fabrication of patterned carbon nanofiber nanoelectrode arrays: A route for development of multiplexed, ultrasensitive disposable biosensors [J].
Arumugam, Prabhu U. ;
Chen, Hua ;
Siddiqui, Shabnam ;
Weinrich, Jarret A. P. ;
Jejelowo, Ayodeji ;
Li, Jun ;
Meyyappan, M. .
BIOSENSORS & BIOELECTRONICS, 2009, 24 (09) :2818-2824
[2]   CATALYTIC GROWTH OF CARBON FILAMENTS [J].
BAKER, RTK .
CARBON, 1989, 27 (03) :315-323
[3]   Functionalized vertically aligned carbon nanofibers as scaffolds for immobilization and electrochemical detection of redox-active proteins [J].
Baker, Sarah E. ;
Colavita, Paula E. ;
Tse, Kiu-Yuen ;
Hamers, Robert J. .
CHEMISTRY OF MATERIALS, 2006, 18 (18) :4415-4422
[4]   Fabrication and characterization of vertically aligned carbon nanofiber electrodes for biosensing applications [J].
Baker, SE ;
Tse, KY ;
Lee, CS ;
Hamers, RJ .
DIAMOND AND RELATED MATERIALS, 2006, 15 (2-3) :433-439
[5]   Covalent functionalization for biomolecular recognition on vertically aligned carbon nanofibers [J].
Baker, SE ;
Tse, KY ;
Hindin, E ;
Nichols, BM ;
Clare, TL ;
Hamers, RJ .
CHEMISTRY OF MATERIALS, 2005, 17 (20) :4971-4978
[6]   Digital electrostatic electron-beam array lithography [J].
Baylor, LR ;
Lowndes, DH ;
Simpson, ML ;
Thomas, CE ;
Guillorn, MA ;
Merkulov, VI ;
Whealton, JH ;
Ellis, ED ;
Hensley, DK ;
Melechko, AV .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2002, 20 (06) :2646-2650
[7]   Complex dewetting scenarios captured by thin-film models [J].
Becker, J ;
Grün, G ;
Seemann, R ;
Mantz, H ;
Jacobs, K ;
Mecke, KR ;
Blossey, R .
NATURE MATERIALS, 2003, 2 (01) :59-63
[8]   Dewetting modes of thin metallic films: Nucleation of holes and spinodal dewetting [J].
Bischof, J ;
Scherer, D ;
Herminghaus, S ;
Leiderer, P .
PHYSICAL REVIEW LETTERS, 1996, 77 (08) :1536-1539
[9]   Low temperature synthesis of carbon nanofibres on carbon fibre matrices [J].
Boskovic, BO ;
Golovko, VB ;
Cantoro, M ;
Kleinsorge, B ;
Chuang, ATH ;
Ducati, C ;
Hofmann, S ;
Robertson, J ;
Johnson, BFG .
CARBON, 2005, 43 (13) :2643-2648
[10]   Large-area synthesis of carbon nanofibres at room temperature [J].
Boskovic, BO ;
Stolojan, V ;
Khan, RUA ;
Haq, S ;
Silva, SRP .
NATURE MATERIALS, 2002, 1 (03) :165-168