Minimal linear codes from weakly regular bent functions

被引:10
作者
Xu, Guangkui [1 ]
Qu, Longjiang [2 ]
Luo, Gaojun [3 ]
机构
[1] Huainan Normal Univ, Sch Finance & Math, Huainan 232038, Peoples R China
[2] Natl Univ Def Technol, Coll Liberal Arts & Sci, Changsha 410073, Peoples R China
[3] Nanyang Technol Univ, Sch Phys & Math Sci, 21 Nanyang Link, Singapore 637371, Singapore
来源
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES | 2022年 / 14卷 / 02期
基金
中国国家自然科学基金;
关键词
Minimal linear codes; Walsh transform; Weakly regular bent functions; Secret sharing schemes; FINITE-FIELDS; TRACE CODES; CONSTRUCTION; FAMILIES;
D O I
10.1007/s12095-021-00519-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Minimal linear codes have received much attention in the past decades due to their important applications in secret sharing schemes and secure two-party computation, etc. Recently, several classes of minimal linear codes with w(min)/w(max) <= (p- 1)/ p have been discovered, where w(min) and w(max) respectively denote the minimum and maximum nonzero weights in a code. In this paper, we investigate the minimality of a class of p-ary linear codes and obtain some sufficient conditions for this kind of linear codes to be minimal, which is a generalization of the recent results given by Xu et al. (Finite Fields Appl. 65,101688, 2020). This allows us to construct new minimal linear codes with w(min)/w(max) <= (p - 1)/ p from weakly regular bent functions for the first time. The parameters of minimal linear codes presented in this paper are different from those known in the literature.
引用
收藏
页码:415 / 431
页数:17
相关论文
共 35 条
  • [1] Minimal vectors in linear codes
    Ashikhmin, A
    Barg, A
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (05) : 2010 - 2017
  • [2] Minimal Linear Codes in Odd Characteristic
    Bartoli, Daniele
    Bonini, Matteo
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (07) : 4152 - 4155
  • [3] Minimal linear codes arising from blocking sets
    Bonini, Matteo
    Borello, Martino
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 53 (02) : 327 - 341
  • [4] Chabanne H., 2013, P ICISC, V8565
  • [5] Linear codes from simplicial complexes
    Chang, Seunghwan
    Hyun, Jong Yoon
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (10) : 2167 - 2181
  • [6] Ding CS, 2003, LECT NOTES COMPUT SC, V2731, P11
  • [7] Minimal Binary Linear Codes
    Ding, Cunsheng
    Heng, Ziling
    Zhou, Zhengchun
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (10) : 6536 - 6545
  • [8] A construction of binary linear codes from Boolean functions
    Ding, Cunsheng
    [J]. DISCRETE MATHEMATICS, 2016, 339 (09) : 2288 - 2303
  • [9] Linear Codes From Some 2-Designs
    Ding, Cunsheng
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (06) : 3265 - 3275
  • [10] Monomial and quadratic bent functions over the finite fields of odd characteristic
    Helleseth, T
    Kholosha, A
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (05) : 2018 - 2032