Computation of Controlled Invariants for Nonlinear Systems: Application to Safe Neural Networks Approximation and Control

被引:4
作者
Saoud, Adnane [1 ]
Sanfelice, Ricardo G. [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Elect & Comp Engn, Santa Cruz, CA 95064 USA
关键词
Invariance; nonlinear systems; framers; neural networks;
D O I
10.1016/j.ifacol.2021.08.480
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider the problem of computing multidimensional interval controlled invariants for nonlinear input-affine systems. We first present sufficient conditions for an interval to be controlled invariant. Then, we introduce the concept of local framers, based on which we present a sound algorithm to compute interval controlled invariants. Finally, we show how the proposed framework makes it possible to provide safety guarantees when using deep neural networks, either as a model or a controller of nonlinear systems. Illustrative examples are provided showing the merits of the proposed approach and its scalability properties. Copyright (C) 2021 The Authors.
引用
收藏
页码:91 / 96
页数:6
相关论文
共 20 条
[1]   Box invariance in biologically-inspired dynamical systems [J].
Abate, Alessandro ;
Tiwari, Ashish ;
Sastry, Shankar .
AUTOMATICA, 2009, 45 (07) :1601-1610
[2]  
[Anonymous], 2009, Verification and Control of Hybrid Systems: A Symbolic Approach
[3]  
Aubin J. P., 2009, Viability theory, DOI DOI 10.1007/978-0-8176-4910-4
[4]  
Bansal S, 2016, IEEE DECIS CONTR P, P4653, DOI 10.1109/CDC.2016.7798978
[5]  
Blanchini F, 2008, SYST CONTROL-FOUND A, P1
[6]  
Cannon M, 2003, AUTOMATICA, V39, P1487, DOI 10.1016/S005-1098(03)00128-6
[7]  
Chai J, 2020, IEEE TRAN AUTOMATIC
[8]   SYNCHRONIZATION AND TRANSIENT STABILITY IN POWER NETWORKS AND NONUNIFORM KURAMOTO OSCILLATORS [J].
Doerfler, Florian ;
Bullo, Francesco .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2012, 50 (03) :1616-1642
[9]   APPROXIMATION CAPABILITIES OF MULTILAYER FEEDFORWARD NETWORKS [J].
HORNIK, K .
NEURAL NETWORKS, 1991, 4 (02) :251-257
[10]   Decentralized Robust Adaptive Control for the Multiagent System Consensus Problem Using Neural Networks [J].
Hou, Zeng-Guang ;
Cheng, Long ;
Tan, Min .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2009, 39 (03) :636-647