On the eigenvalue problems for differential operators with coupled boundary conditions

被引:2
作者
Sajavicius, S. [1 ,2 ]
机构
[1] Vilnius Univ, Fac Math & Informat, LT-03225 Vilnius, Lithuania
[2] Mykolas Romeris Univ, Fac Social Informat, LT-08303 Vilnius, Lithuania
来源
NONLINEAR ANALYSIS-MODELLING AND CONTROL | 2010年 / 15卷 / 04期
关键词
coupled boundary conditions; eigenvalue problem; differential operator; STABILITY; EQUATION; SCHEME;
D O I
10.15388/NA.15.4.14320
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, the eigenvalue problems for one- and two-dimensional second order differential operators with nonlocal coupled boundary conditions are considered. Conditions for the existence of zero, positive, negative or complex eigenvalues are proposed and analytical expressions of eigenvalues are provided.
引用
收藏
页码:493 / 500
页数:8
相关论文
共 18 条
  • [1] [Anonymous], DIFFER EQU
  • [2] [Anonymous], 2004, NONLINEAR ANAL-MODEL, DOI 2191914
  • [3] STEPWISE STABILITY FOR THE HEAT-EQUATION WITH A NONLOCAL CONSTRAINT
    CAHLON, B
    KULKARNI, DM
    SHI, P
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (02) : 571 - 593
  • [4] Gulin A., 2006, Computational Methods in Applied Mathematics, V6, P31, DOI 10.2478/cmam-2006-0002
  • [5] Difference scheme for the Samarskii-Ionkin problem with a parameter
    Gulin, A. V.
    Udovichenko, N. S.
    [J]. DIFFERENTIAL EQUATIONS, 2008, 44 (07) : 991 - 998
  • [6] Gulin A.V., 2009, COMPUT METHODS APPL, V9, P79
  • [7] On the stability of a nonlocal finite-difference boundary value problem
    Gulin, AV
    Morozova, VA
    [J]. DIFFERENTIAL EQUATIONS, 2003, 39 (07) : 962 - 967
  • [8] GULIN AV, 2008, STABILITY NONLOCAL D
  • [9] Ionkin N.I., 1979, 14 NUM MODZ
  • [10] IONKIN NI, 1977, DIFFER EQU, V13, P203