High Contrast Imaging for Python']Python (HCIPy): an open-source adaptive optics and coronagraph simulator

被引:117
作者
Por, Emiel H. [1 ]
Haffert, Sebastiaan Y. [1 ]
Radhakrishnan, Vikram M. [1 ]
Doelman, David S. [1 ]
van Kooten, Maaike [1 ]
Bos, Steven P. [1 ]
机构
[1] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands
来源
ADAPTIVE OPTICS SYSTEMS VI | 2018年 / 10703卷
基金
巴西圣保罗研究基金会;
关键词
HCIPy; !text type='Python']Python[!/text; Simulations; High Contrast Imaging; Adaptive Optics; Coronagraphy; Open source; WAVE-FRONT SENSOR; PLANET DETECTION; PHASE;
D O I
10.1117/12.2314407
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
HCIPy is a package written in Python for simulating the interplay between wavefront control and coronagraphic systems. By defining an element which merges values/coefficients with its sampling grid/modal basis into a single object called Field, this minimizes errors in writing the code and makes it clearer to read. HCIPy provides a monochromatic Wavefront and defines a Propagator that acts as the transformation between two wavefronts. In this way a Propagator acts as any physical part of the optical system, be it a piece of free space, a thin complex apodizer or a microlens array. HCIPy contains Fraunhofer and Fresnel propagators through free space. It includes an implementation of a thin complex apodizer, which can modify the phase and/or amplitude of a wavefront, and forms the basis for more complicated optical elements. Included in HCIPy are wavefront errors (modal, power spectra), complex apertures (VLT, Keck or Subaru pupil), coronagraphs (Lyot, vortex or apodizing phase plate coronagraph), deformable mirrors, wavefront sensors (Shack-Hartmann, Pyramid, Zernike or phase-diversity wavefront sensor) and multi-layer atmospheric models including scintillation). HCIPy aims to provide an easy-to-use, modular framework for wavefront control and coronagraphy on current and future telescopes, enabling rapid prototyping of the full high-contrast imaging system. Adaptive optics and coronagraphic systems can be easily extended to include more realistic physics. The package includes a complete documentation of all classes and functions, and is available as open-source software.
引用
收藏
页数:14
相关论文
共 46 条
  • [1] [Anonymous], 2014, SCIPY OPEN SOURCE SC
  • [2] Method for simulating infinitely long and non stationary phase screens with optimized memory storage
    Assémat, F
    Wilson, RW
    Gendron, E
    [J]. OPTICS EXPRESS, 2006, 14 (03): : 988 - 999
  • [3] Durham adaptive optics real-time controller
    Basden, Alastair
    Geng, Deli
    Myers, Richard
    Younger, Eddy
    [J]. APPLIED OPTICS, 2010, 49 (32) : 6354 - 6363
  • [4] Baudoz P., 2005, P INT ASTRON UNION, V1, P553, DOI DOI 10.1017/S174392130600994X
  • [5] Phase contrast techniques for wavefront sensing and calibration in adaptive optics
    Bloemhof, EE
    Wallace, JK
    [J]. ASTRONOMICAL ADAPTIVE OPTICS SYSTEMS AND APPLICATIONS, 2003, 5169 : 309 - 320
  • [6] Bos S. P., 2018, P SPIE
  • [7] Rigorous vector wave propagation for arbitrary flat media
    Bos, Steven P.
    Haffert, Sebastiaan Y.
    Keller, Christoph U.
    [J]. POLARIZATION SCIENCE AND REMOTE SENSING VIII, 2017, 10407
  • [8] Optimal pupil apodizations of arbitrary apertures for high-contrast imaging
    Carlotti, A.
    Vanderbei, R.
    Kasdin, N. J.
    [J]. OPTICS EXPRESS, 2011, 19 (27): : 26796 - 26809
  • [9] Fundamental limitations on Earth-like planet detection with extremely large telescopes
    Cavarroc, C
    Boccaletti, A
    Baudoz, P
    Fusco, T
    Rouan, D
    [J]. ASTRONOMY & ASTROPHYSICS, 2006, 447 (01): : 397 - 403
  • [10] Imaging extrasolar planets by stellar halo suppression in separately corrected color bands
    Codona, JL
    Angel, R
    [J]. ASTROPHYSICAL JOURNAL, 2004, 604 (02) : L117 - L120