Visual Search Target Inference in Natural Interaction Settings with Machine Learning

被引:17
作者
Barz, Michael [1 ,3 ]
Stauden, Sven [2 ]
Sonntag, Daniel [1 ]
机构
[1] German Res Ctr Artificial Intelligence DFKI, Saarbrucken, Germany
[2] Saarland Univ, Saarbrucken, Germany
[3] Saarbrucken Grad Sch Comp Sci, Saarbrucken, Germany
来源
ETRA'20 FULL PAPERS: ACM SYMPOSIUM ON EYE TRACKING RESEARCH AND APPLICATIONS | 2020年
关键词
Mobile Eyetracking; Visual Attention; Search Target Inference; Machine Learning; EYE-MOVEMENTS; REVEAL;
D O I
10.1145/3379155.3391314
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Visual search is a perceptual task in which humans aim at identifying a search target object such as a traffic sign among other objects. Search target inference subsumes computational methods for predicting this target by tracking and analyzing overt behavioral cues of that person, e.g., the human gaze and fixated visual stimuli. We present a generic approach to inferring search targets in natural scenes by predicting the class of the surrounding image segment. Our method encodes visual search sequences as histograms of fixated segment classes determined by SegNet, a deep learning image segmentation model for natural scenes. We compare our sequence encoding and model training (SVM) to a recent baseline from the literature for predicting the target segment. Also, we use a new search target inference dataset. The results show that, first, our new segmentation-based sequence encoding outperforms the method from the literature, and second, that it enables target inference in natural settings.
引用
收藏
页数:8
相关论文
共 38 条
[1]   Gaze Augmentation in Egocentric Video Improves Awareness of Intention [J].
Akkil, Deepak ;
Isokoski, Poika .
34TH ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, CHI 2016, 2016, :1573-1584
[2]  
[Anonymous], 2013, EYE GAZE INTELLIGENT, DOI DOI 10.1007/978-1-4471-4784-8_9
[3]  
[Anonymous], 2018, ARXIV180304818
[4]  
[Anonymous], 2007, P INT WORKSHOP WORKS
[5]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[6]   Error-Aware Gaze-Based Interfaces for Robust Mobile Gaze Interaction [J].
Barz, Michael ;
Daiber, Florian ;
Sonntag, Daniel ;
Bulling, Andreas .
2018 ACM SYMPOSIUM ON EYE TRACKING RESEARCH & APPLICATIONS (ETRA 2018), 2018,
[7]   Prediction of Gaze Estimation Error for Error-Aware Gaze-Based Interfaces [J].
Barz, Michael ;
Daiber, Florian ;
Bulling, Andreas .
2016 ACM SYMPOSIUM ON EYE TRACKING RESEARCH & APPLICATIONS (ETRA 2016), 2016, :275-278
[8]   What do eyes reveal about the mind? Algorithmic inference of search targets from fixations [J].
Borji, Ali ;
Lennartz, Andreas ;
Pomplun, Marc .
NEUROCOMPUTING, 2015, 149 :788-799
[9]   Top-down control of eye movements: Yarbus revisited [J].
DeAngelus, Marianne ;
Pelz, Jeff B. .
VISUAL COGNITION, 2009, 17 (6-7) :790-811
[10]   Automatic Detection of Visual Search for the Elderly using Eye and Head Tracking Data [J].
Dietz M. ;
Schork D. ;
Damian I. ;
Steinert A. ;
Haesner M. ;
André E. .
KI - Kunstliche Intelligenz, 2017, 31 (04) :339-348