Bio-oil production from Colombian bagasse by fast pyrolysis in a fluidized bed: An experimental study

被引:70
|
作者
Montoya, J. I. [1 ]
Valdes, C. [1 ]
Chejne, F. [1 ]
Gomez, C. A. [1 ]
Blanco, A. [1 ]
Marrugo, G. [1 ,2 ]
Osorio, J. [1 ]
Castillo, E. [2 ]
Aristobulo, J. [2 ]
Acero, J. [2 ]
机构
[1] Univ Nacl Colombia, Fac Minas, Grp Tayea, Medellin, Colombia
[2] ECOPETROL, ICP, Santander, Spain
关键词
Fast pyrolysis; Fluidized bed; Bio-oil; Sugarcane bagasse; OPERATING PARAMETERS; GASIFICATION; BIOMASS; MODEL; TAR;
D O I
10.1016/j.jaap.2014.11.007
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We present experimental results of fast pyrolysis of sugarcane bagasse in a fluidized-bed reactor, in which temperature, biomass feed rate, carrier gas flow, biomass, and effects or inert material particle size on global product distribution were evaluated. For this, changes in the fluid dynamic parameters were made (fluidizing gas flow between 20 and 60 L/min, biomass feed rate between 2.0 and 5.3 kg/h, and inert material particle size between 0.20 and 0.5125 mm). Experimentally, we found that the highest yield of bio-oil was obtained when the reactor was operated at 500 degrees C, with a carrier gas flow (nitrogen) of 50 L/min, particle size of the inert material and biomass both between 0.600 and 0.425 mm, and biomass feed rate of 2 kg/h. Under these conditions, yields of 72.94% (w/w), 23.28% (w/w), and 3.79% (w/w) for bio-oil, biocarbon, and permanent gases were reached, respectively. Our results show synergic effects between reactivity and fluid dynamics on a fluidized bed, which ensures an efficient, fast pyrolysis process. Therefore, there are two competitive effects related to the particle diameter: first, the yield increases due to heating severity; second, the yield decreases due to entrainment of the smallest particles. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:379 / 387
页数:9
相关论文
共 50 条
  • [31] Fast pyrolysis of raw and acid-washed cattle manure in a fluidized bed reactor for the production of bio-oil
    Jeon, Jae-Rak
    Hidayat, Syarif
    Kim, Jinsoo
    Hwang, Hyun Tae
    Kim, Seung-Soo
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2025, 186
  • [32] Flash pyrolysis of biomass for bio-oil in a fluidized bed reactor
    Wang, SR
    Luo, ZY
    Yu, CJ
    Liao, YF
    Hong, J
    Cen, KF
    Dong, LJ
    ENERGY AND ENVIRONMENT, VOLS 1 AND 2, 2003, : 245 - 250
  • [33] Bed agglomeration during fast pyrolysis of bio-oil derived fuels in a fluidized-bed reactor
    Gao, Wenran
    Zhang, Mingming
    Wu, Hongwei
    FUEL, 2022, 328
  • [34] Bench-scale fluidized-bed pyrolysis of switchgrass for bio-oil production
    Boateng, Akwasi A.
    Daugaard, Daren E.
    Goldberg, Neil M.
    Hicks, Kevin B.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (07) : 1891 - 1897
  • [35] Production and characterization of bio-oil from fluidized bed pyrolysis of olive stones, pinewood, and torrefied feedstock
    Trubetskaya, Anna
    von Berg, Lukas
    Johnson, Robert
    Moore, Sean
    Leahy, J. J.
    Han, Yinglei
    Lange, Heiko
    Anca-Couce, Andres
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2023, 169
  • [36] Pyrolysis of Bagasse (Saccharum officinarum) Waste for Bio-Oil Production
    Chouhan, Singh A. P.
    RESEARCH JOURNAL OF PHARMACEUTICAL BIOLOGICAL AND CHEMICAL SCIENCES, 2015, 6 (05): : 510 - 516
  • [37] Bio-oil production from rice husk fast pyrolysis in a conical spouted bed reactor
    Alvarez, Jon
    Lopez, Gartzen
    Amutio, Maider
    Bilbao, Javier
    Olazar, Martin
    FUEL, 2014, 128 : 162 - 169
  • [38] Production of bio-oil from fast pyrolysis of biomass using a pilot-scale circulating fluidized bed reactor and its characterization
    Park, Jo Yong
    Kim, Jae-Kon
    Oh, Chang-Ho
    Park, Jong-Wook
    Kwon, Eilhann E.
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2019, 234 : 138 - 144
  • [39] Bio-oil production from fast pyrolysis of rice husk in a commercial-scale plant with a downdraft circulating fluidized bed reactor
    Cai, Wenfei
    Liu, Ronghou
    He, Yifeng
    Chai, Meiyun
    Cai, Junmeng
    FUEL PROCESSING TECHNOLOGY, 2018, 171 : 308 - 317
  • [40] Experimental study of biomass flash pyrolysis for bio-oil production
    Wang, Qi
    Wang, Shu-Rong
    Wang, Le
    Tan, Hong
    Luo, Zhong-Yang
    Cen, Ke-Fa
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2007, 28 (01): : 173 - 176