Bio-oil production from Colombian bagasse by fast pyrolysis in a fluidized bed: An experimental study

被引:74
作者
Montoya, J. I. [1 ]
Valdes, C. [1 ]
Chejne, F. [1 ]
Gomez, C. A. [1 ]
Blanco, A. [1 ]
Marrugo, G. [1 ,2 ]
Osorio, J. [1 ]
Castillo, E. [2 ]
Aristobulo, J. [2 ]
Acero, J. [2 ]
机构
[1] Univ Nacl Colombia, Fac Minas, Grp Tayea, Medellin, Colombia
[2] ECOPETROL, ICP, Santander, Spain
关键词
Fast pyrolysis; Fluidized bed; Bio-oil; Sugarcane bagasse; OPERATING PARAMETERS; GASIFICATION; BIOMASS; MODEL; TAR;
D O I
10.1016/j.jaap.2014.11.007
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We present experimental results of fast pyrolysis of sugarcane bagasse in a fluidized-bed reactor, in which temperature, biomass feed rate, carrier gas flow, biomass, and effects or inert material particle size on global product distribution were evaluated. For this, changes in the fluid dynamic parameters were made (fluidizing gas flow between 20 and 60 L/min, biomass feed rate between 2.0 and 5.3 kg/h, and inert material particle size between 0.20 and 0.5125 mm). Experimentally, we found that the highest yield of bio-oil was obtained when the reactor was operated at 500 degrees C, with a carrier gas flow (nitrogen) of 50 L/min, particle size of the inert material and biomass both between 0.600 and 0.425 mm, and biomass feed rate of 2 kg/h. Under these conditions, yields of 72.94% (w/w), 23.28% (w/w), and 3.79% (w/w) for bio-oil, biocarbon, and permanent gases were reached, respectively. Our results show synergic effects between reactivity and fluid dynamics on a fluidized bed, which ensures an efficient, fast pyrolysis process. Therefore, there are two competitive effects related to the particle diameter: first, the yield increases due to heating severity; second, the yield decreases due to entrainment of the smallest particles. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:379 / 387
页数:9
相关论文
共 36 条
[1]  
A.S. Kalgo, 2011, THESIS ASTON U UK
[2]   Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways [J].
Anex, Robert P. ;
Aden, Andy ;
Kazi, Feroz Kabir ;
Fortman, Joshua ;
Swanson, Ryan M. ;
Wright, Mark M. ;
Satrio, Justinus A. ;
Brown, Robert C. ;
Daugaard, Daren E. ;
Platon, Alex ;
Kothandaraman, Geetha ;
Hsu, David D. ;
Dutta, Abhijit .
FUEL, 2010, 89 :S29-S35
[3]  
Basu P, 2010, BIOMASS GASIFICATION AND PYROLYSIS: PRACTICAL DESIGN AND THEORY, P1
[4]   KINETIC-MODEL FOR PYROLYSIS OF CELLULOSE [J].
BRADBURY, AGW ;
SAKAI, Y ;
SHAFIZADEH, F .
JOURNAL OF APPLIED POLYMER SCIENCE, 1979, 23 (11) :3271-3280
[5]   Review of fast pyrolysis of biomass and product upgrading [J].
Bridgwater, A. V. .
BIOMASS & BIOENERGY, 2012, 38 :68-94
[6]  
Bridgwater A.V., 1999, FAST PYROLYSIS BIOMA
[7]   Fast pyrolysis characteristics of lignocellulosic biomass with varying reaction conditions [J].
Choi, Hang Seok ;
Choi, Yeon Seok ;
Park, Hoon Chae .
RENEWABLE ENERGY, 2012, 42 :131-135
[8]  
de Wild P., 2011, Biomass Pyrolysis for Chemicals
[9]   The closed system pyrolysis of β-O-4 lignin substructure model compounds [J].
Drage, TC ;
Vane, CH ;
Abbott, GD .
ORGANIC GEOCHEMISTRY, 2002, 33 (12) :1523-1531
[10]   Optimization of a free-fall reactor for the production of fast pyrolysis bio-oil [J].
Ellens, C. J. ;
Brown, R. C. .
BIORESOURCE TECHNOLOGY, 2012, 103 (01) :374-380