Molecular dynamics lattice gas equilibrium distribution function for Lennard-Jones particles

被引:1
|
作者
Pachalieva, Aleksandra [1 ,2 ]
Wagner, Alexander J. [3 ]
机构
[1] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[2] Tech Univ Munich, Dept Mech Engn, D-85748 Garching, Germany
[3] North Dakota State Univ, Dept Phys, Fargo, ND 58108 USA
关键词
molecular dynamics; lattice gas method; lattice Boltzmann method; coarse-graining; BOLTZMANN METHOD; MODEL;
D O I
10.1098/rsta.2020.0404
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The molecular dynamics lattice gas (MDLG) method maps a molecular dynamics (MD) simulation onto a lattice gas using a coarse-graining procedure. This is a novel fundamental approach to derive the lattice Boltzmann method (LBM) by taking a Boltzmann average over the MDLG. A key property of the LBM is the equilibrium distribution function, which was originally derived by assuming that the particle displacements in the MD simulation are Boltzmann distributed. However, we recently discovered that a single Gaussian distribution function is not sufficient to describe the particle displacements in a broad transition regime between free particles and particles undergoing many collisions in one time step. In a recent publication, we proposed a Poisson weighted sum of Gaussians which shows better agreement with the MD data. We derive a lattice Boltzmann equilibrium distribution function from the Poisson weighted sum of Gaussians model and compare it to a measured equilibrium distribution function from MD data and to an analytical approximation of the equilibrium distribution function from a single Gaussian probability distribution function. This article is part of the theme issue 'Progress in mesoscale methods for fluid dynamics simulation'.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] FOURTH VIRIAL-COEFFICIENT OF A GAS OF LENNARD-JONES PARTICLES
    SELEVANY.VI
    TSYKALO, AL
    HIGH TEMPERATURE, 1972, 10 (03) : 579 - 580
  • [22] Association of Lennard-Jones particles in nanoconfined aqueous solution: Theory and molecular dynamics simulations
    Zhao, Liang
    Shi, Zhimin
    Qian, Qinyu
    Song, Jingqiu
    Chen, Qian
    Yang, Jinge
    Wang, Chunlei
    Tu, Yusong
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2021, 563
  • [23] C-LANGUAGE MOLECULAR-DYNAMICS PROGRAM FOR THE SIMULATION OF LENNARD-JONES PARTICLES
    BARGIEL, M
    DZWINEL, W
    KITOWSKI, J
    MOSCINSKI, J
    COMPUTER PHYSICS COMMUNICATIONS, 1991, 64 (01) : 193 - 205
  • [24] On thermal diffusion in binary and ternary Lennard-Jones mixtures by non-equilibrium molecular dynamics
    Galliéro, G
    Duguay, B
    Caltagirone, JP
    Montel, F
    PHILOSOPHICAL MAGAZINE, 2003, 83 (17-18): : 2097 - 2108
  • [25] Self-diffusion of a relativistic Lennard-Jones gas via semirelativistic molecular dynamics
    Testa, David Miles
    Svensson, Pontus
    Jackson, Jacob
    Campbell, Thomas
    Gregori, Gianluca
    PHYSICAL REVIEW E, 2023, 107 (05)
  • [26] ON THE BEHAVIOR OF ADSORPTION-ISOTHERMS OF A LENNARD-JONES GAS ON A DISORDERED LATTICE
    BENEGAS, EI
    PEREYRA, VD
    ZGRABLICH, G
    SURFACE SCIENCE, 1987, 187 (01) : L647 - L653
  • [27] Local fluctuations in the non-equilibrium dynamics of a Lennard-Jones glass
    Castillo, HE
    Biswas, P
    FLUCTUATIONS AND NOISE IN MATERIALS, 2004, : 220 - 229
  • [28] Molecular dynamics simulation of annular flow boiling with the modified Lennard-Jones potential function
    Semiromi, D. Toghraie
    Azimian, A. R.
    HEAT AND MASS TRANSFER, 2012, 48 (01) : 141 - 152
  • [29] Molecular dynamics simulation of annular flow boiling with the modified Lennard-Jones potential function
    D. Toghraie Semiromi
    A. R. Azimian
    Heat and Mass Transfer, 2012, 48 : 141 - 152
  • [30] Molecular dynamics simulation of solute diffusion in Lennard-Jones fluids
    Yamaguchi, T
    Kimura, Y
    Hirota, N
    MOLECULAR PHYSICS, 1998, 94 (03) : 527 - 537