Molecular dynamics lattice gas equilibrium distribution function for Lennard-Jones particles

被引:1
|
作者
Pachalieva, Aleksandra [1 ,2 ]
Wagner, Alexander J. [3 ]
机构
[1] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[2] Tech Univ Munich, Dept Mech Engn, D-85748 Garching, Germany
[3] North Dakota State Univ, Dept Phys, Fargo, ND 58108 USA
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2021年 / 379卷 / 2208期
关键词
molecular dynamics; lattice gas method; lattice Boltzmann method; coarse-graining; BOLTZMANN METHOD; MODEL;
D O I
10.1098/rsta.2020.0404
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The molecular dynamics lattice gas (MDLG) method maps a molecular dynamics (MD) simulation onto a lattice gas using a coarse-graining procedure. This is a novel fundamental approach to derive the lattice Boltzmann method (LBM) by taking a Boltzmann average over the MDLG. A key property of the LBM is the equilibrium distribution function, which was originally derived by assuming that the particle displacements in the MD simulation are Boltzmann distributed. However, we recently discovered that a single Gaussian distribution function is not sufficient to describe the particle displacements in a broad transition regime between free particles and particles undergoing many collisions in one time step. In a recent publication, we proposed a Poisson weighted sum of Gaussians which shows better agreement with the MD data. We derive a lattice Boltzmann equilibrium distribution function from the Poisson weighted sum of Gaussians model and compare it to a measured equilibrium distribution function from MD data and to an analytical approximation of the equilibrium distribution function from a single Gaussian probability distribution function. This article is part of the theme issue 'Progress in mesoscale methods for fluid dynamics simulation'.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Collision frequency of Lennard-Jones fluids at high densities by equilibrium molecular dynamics simulation
    G. A. Adebayo
    B. C. Anusionwu
    A. N. Njah
    O. J. Adeniran
    B. Mathew
    R. S. Sunmonu
    Pramana, 2010, 75 : 523 - 536
  • [2] Collision frequency of Lennard-Jones fluids at high densities by equilibrium molecular dynamics simulation
    Adebayo, G. A.
    Anusionwu, B. C.
    Njah, A. N.
    Adeniran, O. J.
    Mathew, B.
    Sunmonu, R. S.
    PRAMANA-JOURNAL OF PHYSICS, 2010, 75 (03): : 523 - 536
  • [3] C-LANGUAGE MOLECULAR-DYNAMICS PROGRAM FOR THE SIMULATION OF LENNARD-JONES PARTICLES
    BARGIEL, M
    DZWINEL, W
    KITOWSKI, J
    MOSCINSKI, J
    COMPUTER PHYSICS COMMUNICATIONS, 1991, 64 (01) : 193 - 205
  • [4] Validity of the molecular-dynamics-lattice-gas global equilibrium distribution function
    Parsa, M. Reza
    Pachalieva, Aleksandra
    Wagner, Alexander J.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2019, 30 (10):
  • [5] Local fluctuations in the non-equilibrium dynamics of a Lennard-Jones glass
    Castillo, HE
    Biswas, P
    FLUCTUATIONS AND NOISE IN MATERIALS, 2004, : 220 - 229
  • [6] Friction between Two Brownian Particles in a Lennard-Jones Solvent: A Molecular Dynamics Simulation Study
    Lee, Song Hi
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2010, 31 (08) : 2402 - 2405
  • [7] Molecular dynamics investigations on Lennard-Jones systems near the gas-liquid critical point
    Litniewski, M
    FLUID PHASE EQUILIBRIA, 2001, 178 (1-2) : 97 - 118
  • [8] Molecular dynamics study on homonuclear and heteronuclear chains of Lennard-Jones segments
    Banaszak, M
    Radosz, M
    FLUID PHASE EQUILIBRIA, 2002, 193 (1-2) : 179 - 189
  • [9] Molecular dynamics simulation of thin film evaporation of Lennard-Jones liquid
    Wu, Y. W.
    Pan, Chin
    NANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING, 2006, 10 (02) : 157 - 170
  • [10] Molecular dynamics study of structure of clusters in supercritical Lennard-Jones fluid
    Yoshii, N
    Okazaki, S
    FLUID PHASE EQUILIBRIA, 1998, 144 (1-2) : 225 - 232