WELL PRODUCTIVITY INDEX FOR COMPRESSIBLE FLUIDS AND GASES

被引:2
|
作者
Aulisa, Eugenio [1 ]
Bloshanskaya, Lidia [1 ,2 ]
Ibragimov, Akif [1 ,2 ]
机构
[1] Texas Tech Univ, Dept Math & Stat Broadway & Boston, Lubbock, TX 79409 USA
[2] SUNY Coll New Paltz, Dept Math, 1 Hawk Dr, New Paltz, NY 12561 USA
来源
EVOLUTION EQUATIONS AND CONTROL THEORY | 2016年 / 5卷 / 01期
关键词
Nonlinear flow; Forchheimer flow; gas flow; compressible fluid; productivity index; CONTINUOUS DEPENDENCE; FORCHHEIMER; BRINKMAN; CONVERGENCE; MODELS; DARCY; FLOWS;
D O I
10.3934/eect.2016.5.1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss the notion of the well productivity index (PI) for the generalized Forchheimer flow of fluid through porous media. The PI characterizes the well capacity with respect to drainage area of the well and in general is time dependent. In case of the slightly compressible fluid the PI stabilizes in time to the specific value, determined by the so-called pseudo steady state solution, [5, 3, 4]. Here we generalize our results from [1] in case of arbitrary order of the nonlinearity of the flow. In case of the compressible gas flow the mathematical model of the PI is studied for the first time. In contrast to slightly compressible fluid the PI stays "almost" constant for a long period of time, but then it blows up as time approaches the certain critical value. This value depends on the initial data (initial reserves) of the reservoir. The "greater" are the initial reserves, the larger is this critical value. We present numerical and theoretical results for the time asymptotic of the PI and its stability with respect to the initial data.
引用
收藏
页码:1 / 36
页数:36
相关论文
共 50 条
  • [1] Analysis of generalized Forchheimer flows of compressible fluids in porous media
    Aulisa, Eugenio
    Bloshanskaya, Lidia
    Hoang, Luan
    Ibragimov, Akif
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (10)
  • [2] Structural stability of generalized Forchheimer equations for compressible fluids in porous media
    Hoang, Luan
    Ibragimov, Akif
    NONLINEARITY, 2011, 24 (01) : 1 - 41
  • [3] Compressible Fluids Mitigation Effect Research in Deepwater Oil and Gas Well
    Han, Xuanzhuo
    Gao, Baokui
    Zhang, Hongqiang
    Qin, Xing
    Wang, Wei
    RESOURCES AND SUSTAINABLE DEVELOPMENT, PTS 1-4, 2013, 734-737 : 1165 - 1170
  • [4] Productivity index enhancement by wettability alteration in two-phase compressible flows
    Naik, Saurabh
    You, Zhenjiang
    Bedrikovetsky, Pavel
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2018, 50 : 101 - 114
  • [5] On a mathematical model of the productivity index of a well from reservoir engineering
    Ibragimov, A
    Khalmanova, D
    Valko, PP
    Walton, JR
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2005, 65 (06) : 1952 - 1980
  • [6] Compressible generalized Newtonian fluids
    Malek, J.
    Rajagopal, K. R.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2010, 61 (06): : 1097 - 1110
  • [7] Remark on the Local Well-Posedness of Compressible Non-Newtonian Fluids with Initial Vacuum
    Al Baba, Hind
    Al Taki, Bilal
    Hussein, Amru
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2024, 26 (04)
  • [8] Compressible fluids in a capillary tube
    Athanassenas, Maria
    Finn, Robert
    PACIFIC JOURNAL OF MATHEMATICS, 2006, 224 (02) : 201 - 229
  • [9] Compressible generalized Newtonian fluids
    J. Málek
    K. R. Rajagopal
    Zeitschrift für angewandte Mathematik und Physik, 2010, 61 : 1097 - 1110
  • [10] Mechanical Oscillators in Inviscid Compressible Fluids
    J. Rysti
    J. Tuoriniemi
    Journal of Low Temperature Physics, 2013, 171 : 273 - 279