Obtaining fuzzy control query table by data mining

被引:2
作者
Jun, Gao [1 ]
机构
[1] Shanghai Inst Technol, Shanghai, Peoples R China
来源
SNPD 2007: EIGHTH ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING, AND PARALLEL/DISTRIBUTED COMPUTING, VOL 2, PROCEEDINGS | 2007年
关键词
fuzzy control system; fuzzy control query table; association rule data mining;
D O I
10.1109/SNPD.2007.323
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The key to a good fuzzy control system is its fuzzy control query table, and the system's performance mainly depends on the quality of the table. Based on analyzing fully the principles of a typical fuzzy control systems and the procedures of building a fuzzy control table, this paper presents a new method of applying the boolean association rule data mining techniques to mining of fuzzy control query. table directly from the database of manual operating records.
引用
收藏
页码:374 / 378
页数:5
相关论文
共 5 条
  • [1] HAN J, 2000, P 2000 ACM SIGMOD IN, P1, DOI DOI 10.1145/342009.335372
  • [2] HAN J, 2000, DATA MINING CONCEPTS, P156
  • [3] Interactive data analysis: The control project
    Hellerstein, JM
    Chou, A
    Hidber, C
    Olston, C
    Raman, V
    Roth, T
    Haas, PJ
    [J]. COMPUTER, 1999, 32 (08) : 51 - +
  • [4] Efficient mining of association rules using closed itemset lattices
    Pasquier, N
    Bastide, Y
    Taouil, R
    Lakhal, L
    [J]. INFORMATION SYSTEMS, 1999, 24 (01) : 25 - 46
  • [5] WEI Q, 1999, NAFIPS99