A generalized subspace theorem for closed subschemes in subgeneral position

被引:5
作者
He, Yan [1 ]
Ru, Min [1 ]
机构
[1] Univ Houston, Dept Math, Houston, TX 77204 USA
关键词
Subspace theorem; Second Main Theorem; Subgeneral position; HOLOMORPHIC-CURVES;
D O I
10.1016/j.jnt.2021.04.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we extend the recent theorem of G. Heier and A. Levin [HL21] on the generalization of Schmidt's subspace theorem and Cartan's Second Main Theorem in Nevanlinna theory to closed subschemes located in l-subgeneral position, using the generic linear combination technique due to Quang (see [Quang19]). (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:125 / 141
页数:17
相关论文
共 20 条
[1]   On a general Thue's equation [J].
Corvaja, P ;
Zannier, U .
AMERICAN JOURNAL OF MATHEMATICS, 2004, 126 (05) :1033-1055
[2]   A generalization of the Subspace Theorem with polynomials of higher degree [J].
Evertse, Jan-Hendrik ;
Ferretti, Roberto G. .
DIOPHANTINE APPROXIMATION: FESTSCHRIFT FOR WOLFGANG SCHMIDT, 2008, 16 :175-+
[3]   A GENERALIZED SCHMIDT SUBSPACE THEOREM FOR CLOSED SUBSCHEMES [J].
Heier, Gordon ;
Levin, Aaron .
AMERICAN JOURNAL OF MATHEMATICS, 2021, 143 (01) :213-226
[4]  
Lang S., 1983, Fundamentals of Diophantine geometry
[5]  
Lazarsfeld Robert K., 2017, ERGEBNISSE MATH IHRE, V48
[6]   Seshadri constants, diophantine approximation, and Roth's theorem for arbitrary varieties [J].
McKinnon, David ;
Roth, Mike .
INVENTIONES MATHEMATICAE, 2015, 200 (02) :513-583
[7]  
Ru M., 2001, NEVANLINNA THEORY IT
[8]   A BIRATIONAL NEVANLINNA CONSTANT AND ITS CONSEQUENCES [J].
Ru, Min ;
Vojta, Paul .
AMERICAN JOURNAL OF MATHEMATICS, 2020, 142 (03) :957-991
[9]   A Cartan's Second Main Theorem Approach in Nevanlinna Theory [J].
Ru, Min .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2018, 34 (08) :1208-1224
[10]   A subspace theorem for subvarieties [J].
Ru, Min ;
Wang, Julie Tzu-Yueh .
ALGEBRA & NUMBER THEORY, 2017, 11 (10) :2323-2337